Multiple regression

Data source: Current Population Survey 2006.

wage	average hourly earnings (in \$)
educ	years of education
exper	years potential experience
female	$1=$ female, 0=male
nonwhite	$=1$ if nonwhite
services	$=1$ if in services industry
profocc	$=1$ if in professional occupation
union	$=1$ if respondent is union member

Summary statistics of the variables

. summarize wage educ exper female nonwhite services profocc union

| Variable | Obs | Mean | Std. Dev. | Min | Max |
| ---: | ---: | ---: | :---: | ---: | ---: | ---: |
| wage | 2000 | 18.34701 | 11.49495 | .7 | 82.42857 |
| educ | 2000 | 13.633 | 2.0877 | 9 | 18 |
| exper | 2000 | 20.5885 | 12.75769 | 0 | 67 |
| female | 2000 | .5165 | .4998527 | 0 | 1 |
| nonwhite | 2000 | .149 | .3561775 | 0 | 1 |
| services | 2000 | .152 | .3591107 | 0 | 1 |
| profocc | 2000 | .212 | .4088271 | 0 | 1 |

Regression of log(wage) on education (with increasing number of other controls)

- generate lwage=log(wage)
- regress lwage educ exper female services

Source	SS	df	MS
Model	194.949697	4	48.7374243
Residual	477.62717	1995	. 239412115
Total	672.576867	1999	. 336456662

Number of obs	$=$	2000
F (4, 1995)	$=203.57$	
Prob $>$	$=0.0000$	
R-squared	$=$	0.2899
Adj R-squared	$=$	0.2884
Root MSE	$=$.4893
[95\% Conf.	Interval]	
.0980798	.1191306	
.0086489	.0120284	
-.2868059	-.2006178	
-.2886816	-.1657868	
1.055266	1.359834	

$\widehat{\log (\text { wage })}=$	1.06	+.117 educ	+.011 exp	-.25 female		
	$(.08)$	$(.005)$	$(.0009)$	$(.02)$	\quad	$\mathrm{R}^{2}=.27$
:---						
$\mathrm{n}=2000$						

Adding/omitting an irrelevant variable:

$\overline{\log (\text { wage })}=$	1.06 +.117 educ +.011 exp -.25 female -.037 nonwhite	$\mathrm{R}^{2}=.27$			
$(.08)$	$(.005)$	$(.0009)$	$(.02)$	$(.031)$	$\mathrm{n}=2000$

Adding/omitting an important variable not correlated with the other independent variables:

$\overline{\log (\text { wage })}$	1.28	+.117 educ	-.25 female		
	$(.08)$	$(.006)$	$(.02)$	\quad	$\mathrm{R}^{2}=.21$
:---					

Adding/omitting an important variable correlated with the other independent variables: Omitted variable bias

$\overline{\log (\text { wage })}=$	$\begin{aligned} & 1.17 \\ & (.08) \end{aligned}$	$\begin{gathered} +.106 \text { educ } \\ (.005) \end{gathered}$	$\begin{aligned} & +.011 \text { exp } \\ & (.0009) \end{aligned}$	$\begin{aligned} & -.26 \text { female } \\ & (.02) \end{aligned}$	$\begin{aligned} & +.012 \text { profocc } \\ & (.03) \end{aligned}$	$\begin{aligned} & \mathrm{R}^{2}=.28 \\ & \mathrm{n}=2000 \end{aligned}$
$\overline{\log (\text { wage })}=$	$\begin{aligned} & 2.57 \\ & (.03) \end{aligned}$	$+$	$\begin{aligned} & +.011 \exp \\ & (.0009) \end{aligned}$	$\begin{aligned} & -.26 \text { female } \\ & (.02) \end{aligned}$	$\begin{aligned} & +.358 \text { profocc } \\ & (.03) \end{aligned}$	$\begin{aligned} & \mathrm{R}^{2}=.16 \\ & \mathrm{n}=2000 \end{aligned}$

	lwage	educ	exper	female	profocc	nonwhite
lwage	1.0000					
educ	0.4097	1.0000				
exper	0.2358	0.0010	1.0000			
female	-0.1935	0.0489	0.0210	1.0000		
profocc	0.2181	0.4276	-0.0383	0.1077	1.0000	
nonwhite	-0.0379	-0.0051	-0.0200	0.0368	-0.0143	1.0000

Interpretation

$y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+u \quad E(y)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}$
β_{1} measures the effect on y of a change in x_{1} by 1 (unit), holding other factors fixed (both x_{2} and u) β_{1} measures the effect on $E(y)$ of a change in x_{1} by 1 (unit), holding x_{2} fixed.
$\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{1}+\hat{\beta}_{2} x_{2}$
$\hat{\beta}_{1}$ measures the effect on the predicted \hat{y} of a change in x by 1 (unit), holding x_{2} fixed.
"Holding experience and gender fixed, a one year increase in education is associated with a 11.7% increase in predicted wage"

