Multiple regression

Data source: Current Population Survey 2006.

wage average hourly earnings (in \$)
educ years of education
exper years potential experience
female 1=female, 0=male
nonwhite =1 if nonwhite
services =1 if in services industry
profocc =1 if in professional occupation
union =1 if respondent is union member

Summary statistics of the variables

. summarize wage educ exper female nonwhite services profocc union

Variable	Obs	Mean	Std. Dev.	Min	Max
wage	2000	18.34701	11.49495	.7	82.42857
educ	2000	13.633	2.0877	9	18
exper	2000	20.5885	12.75769	0	67
female	2000	.5165	.4998527	0	1
nonwhite	2000	.149	.3561775	0	1
services	2000	.152	.3591107	0	1
profocc	2000	.212	.4088271	0	1
union	2000	.139	.346033	0	1

Regression of log(wage) on education (with increasing number of other controls)

$\widehat{\log(\text{wage})} =$	+ .114 educ (.006)				$R^2 = .17$ $n = 2000$
$\widehat{\log(\text{wage})} =$	+ .114 educ (.005)	_			$R^2 = .22$ $n = 2000$
$\widehat{\log(\text{wage})} =$	+ .117 educ (.005)	_	25 female (.02)		$R^2 = .27$ $n = 2000$
log(wage) =	+ .109 educ (.005)		24 female (.02)	23 services (.03)	$R^2 = .29$ $n = 2000$

- . generate lwage=log(wage)
- . regress lwage educ exper female services

Source	ss	df	MS		Number of obs F(4, 1995)	
Model Residual	194.949697 477.62717		.7374243 39412115		Prob > F R-squared Adj R-squared	= 0.0000 = 0.2899
Total	672.576867	1999 .3	36456662		Root MSE	= .4893
lwage	Coef.	Std. Err	t	P> t	[95% Conf.	Interval]
lwage 	Coef. 	Std. Err .005367	. t 	P> t 0.000	[95% Conf. 	Interval]
educ	.1086052	.005367	20.24	0.000	.0980798	.1191306
educ exper	.1086052 .0103387	.005367	20.24 12.00	0.000	.0980798	.1191306 .0120284

$$\widehat{\log(\text{wage})} = 1.06 + .117 \text{ educ} + .011 \text{ exp} - .25 \text{ female}$$

$$(.08) \quad (.005) \qquad (.0009) \qquad (.02) \qquad \qquad n = 2000$$

Adding/omitting an irrelevant variable:

$$log(wage) = 1.06 + .117 educ + .011 exp - .25 female - .037 nonwhite $R^2 = .27$
(.08) (.005) (.0009) (.02) (.031) $n = 2000$$$

Adding/omitting an important variable not correlated with the other independent variables:

$$log(wage) = 1.28 + .117 educ$$
 - .25 female $R^2 = .21$ (.08) (.006) (.02) $n = 2000$

Adding/omitting an important variable correlated with the other independent variables: Omitted variable bias

$$\overline{\log(\text{wage})} = 1.17 + .106 \text{ educ} + .011 \text{ exp} - .26 \text{ female} + .012 \text{ profocc} \qquad R^2 = .28$$

$$(.08) \quad (.005) \qquad (.0009) \qquad (.02) \qquad (.03) \qquad \qquad n = 2000$$

$$\overline{\log(\text{wage})} = 2.57 + + .011 \text{ exp} - .26 \text{ female} + .358 \text{ profocc} \qquad R^2 = .16$$

$$(.03) \qquad (.0009) \qquad (.02) \qquad (.03) \qquad \qquad n = 2000$$

. correlate lwage educ \exp female profocc nonwhite (obs=2000)

	lwage	educ	exper	female	profocc	nonwhite
lwage	1.0000					
educ	0.4097	1.0000				
exper	0.2358	0.0010	1.0000			
female	-0.1935	0.0489	0.0210	1.0000		
profocc	0.2181	0.4276	-0.0383	0.1077	1.0000	
nonwhite	-0.0379	-0.0051	-0.0200	0.0368	-0.0143	1.0000

Interpretation

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$$
 $E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$

 β_1 measures the effect on y of a change in x_1 by 1 (unit), holding other factors fixed (both x_2 and u) β_1 measures the effect on E(y) of a change in x_1 by 1 (unit), holding x_2 fixed.

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2$$

 $\hat{\beta}_1$ measures the effect on the predicted \hat{y} of a change in x by 1 (unit), holding x_2 fixed.

"Holding experience and gender fixed, a one year increase in education is associated with a 11.7% increase in predicted wage"