Hypothesis testing about a parameter of the population regression (end)

3. Pollution by paper mills: Are larger and smaller paper mills differentially dirty?

Data source: Data collected by Jay Shimshack, professor at Tulane University
Discharge of suspended solids in waterways by the 160 major pulp and paper plants located throughout the
United States (in 23 states) in the month of January 1990
Emission: total suspended solids discharged, in pounds.
Permit: maximum allowance of suspended solids discharge under the law
Size: firm size - production capacity in kilotons/day
Pulp: a dummy variable equal to 1 for pulp manufacturer and 0 for paper manufacturer

The five steps of hypothesis testing:

Testing whether emission increases proportionately to size, i.e., when plant size increases by 10%, emission also increases by 10%, i.e. the true value $\beta_{\text {Insize }}=1$, as opposed to larger plants being cleaner or dirtier
a. Set the hypotheses: Remember H0 is the hypothesis that you will attempt to reject in favor of H 1

$$
\begin{array}{ll}
\mathrm{H} 0: & \beta_{\ln \text { size }}=1 \\
\mathrm{H} 1: & \beta_{\ln \text { size }} \neq 1
\end{array}
$$

b. Construct the statistic

$$
\mathrm{t} \text {-stat: } t_{160-2-1}=\frac{\hat{\beta}-\beta_{(\text {under } H 0)}}{\operatorname{se}(\hat{\beta})}=\frac{.907-1}{.110}=-0.85
$$

c. Select the significance level. Given the distribution (Student t in this case) and the degrees of freedom, find out the critical value.
At 5% significance level and 157 degrees of freedom, the critical value for a two-tailed test is 1.96
d. Decide whether to reject H 0 or not.

Since $|t|<1.96$, we cannot reject H0 that the true parameter $\beta_{\text {Insize }}=1$
e. Conclude with a (reader friendly) sentence:

We cannot reject the hypothesis that emission increases proportionately to plant size There is no statistical evidence that emission does not increase proportionately to plant size. Or there is no statistical evidence that larger firm are differentially polluting the waterways.

Stata output:

- reg lwage educ exper female nonwhite

Source	SS	df	MS
Model	182.711923	4	45.6779807
Residual	489.864945	1995	. 245546338
Total	672.576867	1999	. 336456662

| Number of obs | $=2000$ |
| ---: | ---: | ---: |
| $F(4,1995)$ | $=186.03$ |
| Prob $>$ F | $=0.0000$ |
| R-squared | $=0.2717$ |
| Adj R-squared | $=0.2702$ |
| Root MSE | $=.49553$ |

lwage	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf. Interval]	
educ	. 1166997	. 0053153	21.96	0.000	. 1062756	. 1271237
exper	. 0108872	. 0008691	12.53	0.000	. 0091827	. 0125917
female	-. 2533177	. 0222198	-11.40	0.000	-. 2968942	-. 2097412
nonwhite	-. 0374311	. 0311452	-1. 20	0.230	-. 0985117	. 0236495
_cons	1.061903	. 0759003	13.99	0.000	. 9130514	1.210756

