EEP 118 / IAS 118 - Introductory Applied Econometrics

Impact Evaluation Methods (2)

2. Difference-in-differences

Duflo, Esther. 2001. "Schooling and Labor Market Consequences of School Construction in Indonesia: Evidence from an Unusual Policy experiment." American Economic Review 91(4): 795-813.

	Years of education		
	Level of program in region of birth Low (C) High (T)	Difference $(\mathrm{T}-\mathrm{C})$	
Before $(12-17$ in 1974)	9.40	8.02	-1.38
After $(2-6$ in 1974)	9.76	8.49	-1.27
Before-After changes	0.36	0.47	0.11

Data needed: Observations before and after the implementation of the program, for both the treatment group and the comparison group.

Key assumption for the validity of the method: the difference between before and after in the comparison group is a good counterfactual for the treatment group.
a) Compute the difference before-after for the comparison group: $\bar{y}_{C 1}-\bar{y}_{C 0}$.
Represents the change in outcome due to natural trend and all other events.
b) Compute the difference before-after for the treatment group:

$$
\bar{y}_{T 1}-\bar{y}_{T 0}
$$

Represents the change in outcome due to natural trend and all other events, and the program
c) The impact of the program:

$$
\text { Impact }=\left(\bar{y}_{T 1}-\bar{y}_{T 0}\right)-\left(\bar{y}_{C 1}-\bar{y}_{C 0}\right)
$$

In a regression framework:

$$
\begin{aligned}
y_{i}= & \beta_{0}+\beta_{1} \text { After }_{i}+\beta_{2} T_{i}+\beta_{3} T_{i} \text { After }_{i}+u_{i} \\
\hat{y}_{i}= & 9.40+0.36 \text { After }_{i}-1.39 T_{i}+0.12 T_{i} \text { After }_{i} \\
& (0.04)(0.04) \quad(0.07)
\end{aligned}
$$

Using: the number of school constructed per 1000 children as a measure of $T: \hat{\beta}_{3}=0.124(0.025)$
Adding control variables $\hat{\beta}_{3}=0.188$ (0.0289)

Tests in support of the validity of the method

Verify that before the program, the Control and Treatment groups had the same trend ("parallel trends") Diff-in-Diffs estimation for the 2 periods prior to the program:

	Years of education		
	Level of program in region of birth Low (C) High (T)	Difference $(\mathrm{T}-\mathrm{C})$	
6 years before $(18-24$ in 1974)	9.12	7.70	-1.42
Before $(12-17$ in 1974)	9.40	8.02	-1.38
Pre-program changes	0.28	0.32	0.04

$\hat{y}_{i}=9.12+0.28$ After $_{i}-1.42 T_{i}+0.04 T_{i}$ After $_{i}$
(0.04) (0.06) (0.07) (0.10)

Using: the number of school constructed per 1000 children as a measure of $T: \hat{\beta}_{3}=0.009(0.026)$
Adding control variables $\hat{\beta}_{3}=0.0075$ (0.0297)

3. Extension of Diff-in-diffs: Rollout of policies and panel data

Do change in traffic laws affect traffic fatalities?
Freeman, D.G. (2007) "Drunk Driving Legislation and Traffic Fatalities: New evidence on the BAC 08 Laws" Contempory Economic Policy 25, 293-308
State level analysis, using 25 years of data from 1980 to 2004, with changes in various state drunk driving, seat belt, and speed limit laws. Data set in Wooldridge "driving.dta"

```
perse administrative license revocation (per se law)
totfatrte total fatalities per 100,000 population
year 1980 to 2004
state 48 continental states, alphabetical
\begin{tabular}{|c|c|c|c|c|c|}
\hline Variable & Obs & Mean & Std. Dev. & Min & Max \\
\hline perse & 1200 & . 5470833 & . 4928654 & 0 & 1 \\
\hline totfatrte & 1200 & 18.91856 & 6.367407 & 6.2 & 53.32 \\
\hline
\end{tabular}
```


Note: States with higher level of fatalities introduced these laws. Obvious time trend, even in states with no introduction of laws. Can we attribute their faster decline in fatalities to the law?

Regression: $y_{i t}=\beta T_{i t}+a_{i}+\delta_{t}+u_{i t}$

Fixed-effects (within) regression Group variable: state				Number	f obs		1200
				Number	f groups		48
R-sq: $\quad \begin{aligned} & \text { within }=0.5354 \\ & \text { between }=0.0273 \\ & \text { overall }=0.1017\end{aligned}$				Obs per group: min			25
							25.0
							25
				F $(25,11$			51.94
corr (u_i, xb) = -0.0659				Prob $>\mathrm{F}$			0.0000
totfatrte	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Con	.	Interval]
perse	-1.848261	. 2423821	-7.63	0.000	-2.323831		-1.37269
year							
1981	-1.814749	. 4565585	-3.97	0.000	-2.710549		-. 9189488
1982	-4.468642	. 4566879	-9.78	0.000	-5.364697		-3.572588
1983	-5.033624	. 4583405	-10.98	0.000	-5.93292		-4.134327
1984	-4.649502	. 4627972	-10.05	0.000	-5.557543		-3.741461
1985	-5.007786	. 4640971	-10.79	0.000	-5.918377		-4.097194
2002	-7.001794	. 4952416	-14.14	0.000	-7.973493		-6.030095
2003	-7.267836	. 4952416	-14.68	0.000	-8.239535		-6.296137
2004	-7.302419	. 4952416	-14.75	0.000	-8.274118		-6.33072
_cons	25.53309	. 3228739	79.08	0.000	24.89959		26.16659
sigma_u	5.7016328						
sigma_e	2.2366622						
rho	. 86663588	(fraction	of varia	ce due t	u_i)		
F test that all $u_{\text {- }} \mathrm{i}=0$:		$F(47,1127)=155.62$		2 Prob > F $=0.0000$			

Key assumption for the validity of the method:
The annual change in the comparison group is a good counterfactual for the annual change in the treatment group

Tests in support of the validity of the method:
(i). The entry into the treatment is not correlated with a differential trend in the performance of the unit in the pre-treatment period.

```
Define the change in fatality rate: totfatrte(t)=totfatrte(t) - totfatrte(t-1)
Define the year of introduction of the law: perseyear
Regress the change in fatality rate on the year in which the law was passed
```

- reg dtotfatrte perseyear d82 if year<1983

Source	SS	df	MS	Number of obs	78
				F(2, 75)	0.82
Model	16.7209756	2	8.36048778	Prob > F	0.4437
Residual	763.33703	75	10.1778271	R -squared	0.0214
				Adj R-squared	-0.0047
Total	780.058006	77	10.1306234	Root MSE	3.1903

dtotfatrte	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf. Interval]	
perseyear	. 0118334	. 0712763	0.17	0.869	-. 1301563	. 1538232
d82	-. 9182045	. 722454	-1.27	0.208	-2.357407	. 5209977
_cons	-25.41392	141.7312	-0.18	0.858	-307.7569	256.9291

What we obtain is a precise zero on the variable perseyear: This means that you fail to reject the value 0 and your estimator has a very small standard error (so that you would reject any big value).
Here with a 0.01 point estimate with se .07 , and 75 degrees of freedom, the $95 \% \mathrm{CI}$ is $.01 \pm 2(.07)=[-.13, .15]$. These are small numbers compared to the estimated effect of -1.84 for perse.

(ii). Absence of Ashenfelter dip: The second verification to be done is that the law were not passed "in reaction" to a sharp increase in fatalities

If this was the case, what we may measure as effect of the program may be simply absence of the shock the next year.
We construct two dummy variables for the year prior to and 2 years before the law was passed:
gen perse_1=(year==perseyear-1)
gen perse_2=(year==perseyear-2)
and add them in the panel regression

| totfatrte | Coef. | Std. Err. | t | P>\|t| | [95\% Conf. Interval] | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| perse | -1.984322 | . 260309 | -7.62 | 0.000 | -2.495068 | -1.473577 |
| perse_1 | -. 67682 | . 3903417 | -1.73 | 0.083 | -1.4427 | . 0890595 |
| perse_2 | -. 3457241 | . 4076816 | -0.85 | 0.397 | -1.145626 | . 4541778 |
| year | | | | | | |
| 1981 | -1.785535 | . 4567127 | -3.91 | 0.000 | -2.681639 | -. 8894303 |
| 1982 | -4.355375 | . 4646388 | -9.37 | 0.000 | -5.267031 | -3.443719 |

We can see that they are not significantly different from 0 and in addition negative.
(iii). Finally robustness check, adding other policies that may be responsible for the decline in fatalities

Conclusion: There is evidence that the administrative license revocation laws passed in different states between 1980 and 2004 had a strong effect in the reduction of traffic fatalities. It reduces fatalities by $1.8-2$ per 100,000 population, over an average of 19 during this period. The result is robust to adding controls for other traffic laws passed by these states.

