ENV ECON 118 / IAS 118 - Introductory Applied Econometrics Assignment 6
 Due Thursday December 3 at the beginning of class

Exercise 1 (10 points): Final 2011 \#2

Consider the following model of the effect of aid on growth:

$$
G D P G_{i}=\beta_{0}+\beta_{1} A I D_{i}+\beta_{2} G O V_{i}+\beta_{3} G O V_{i} \times A I D_{i}+u_{i}
$$

where $G D P G_{i}$ is the growth rate of GDP per capita in country $\mathrm{i}, A I D_{i}$ is the amount of public aid received by country i, and $G O V_{i}$ is an index of quality of governance for country i that varies from 0 for very poor governance to 1 for excellent governance.

1. What is the marginal effect of AID on growth for a country with excellent governance $G O V=1$?
2. How would you proceed to estimate a confidence interval for this marginal effect?

Exercise 2 (10 points): Final 2014 \#5

Does Medicare save lives? Adults 65 years and older are eligible for Medicare health insurance, while those under 65 are not. You have a cross-sectional dataset of emergency room visits made by adults ages 63-67 in California in 2000. This dataset includes the birthday, gender, and family income of the patient, as well as whether or not the patient died within seven days of the emergency room visit.
(a) How would you estimate the causal effect of Medicare on deaths? Be sure to write down the exact regression you would run and define each variable in your regression. [You can use a linear probability model here, for simplicity.] State which coefficient in your regression will give you the estimated causal effect.
(b) What key assumption do you need to make for your regression in part (a) to estimate the causal effect of Medicare on the probability of dying after an emergency room visit?

Exercise 3 (10 points): Final 2013 \#10

Following are two logit estimations of school enrollment of children between 10 and 15 years old. The variables are defined as follows:

enroll	$=1$ if child enrolled in school, 0 otherwise
age	age in years
male	$=1$ if male, 0 otherwise
distsec	distance to the closest school, in km
headeduc	education of the household head, in years
hhsize	family size

(a) Use these results to test the hypothesis that neither of the two variables headeduc and hhsize affects the probability of enrollment at the 5% significance level.
(b) Using the results of Model B, how does the distance to school affect the probability of school enrollment?

Department of Agricultural and Resource Economics
Elisabeth Sadoulet and Erin Kelley University of California at Berkeley

Model A
. logit enroll age male distsec headeduc hhsize

Model B
. logit enroll age male distsec

Logistic regression	Number of obs	$=$	1128
	LR chi2 (3)	$=$	242.95
Log likelihood $=-431.12895$	Prob $>$ chi2	$=$	0.0000
	Pseudo R2	$=$	0.2194

enroll	Coef.	Std. Err.	z	$P>\|z\|$	[95\% Conf. Interval]	
age	-. 7796616	. 0603568	-12.92	0.000	-. 8979587	-. 6613645
male	. 5592701	. 1731976	3.23	0.001	. 2198091	. 8987311
distsec	-. 1635575	. 0338092	-4.84	0.000	-. 2298223	-. 0972927
_cons	11.64867	. 8263081	14.10	0.000	10.02913	13.2682

. mfx

Marginal effects after logit
$\mathrm{y}=\operatorname{Pr}($ enroll) (predict)
$=.87480617$

variable \|	dy/dx	Std. Err.	z	$P>\|z\|$	[95\%	C.I.]	X
age \|	-. 0853888	. 00599	-14.25	0.000	-. 097136	-. 073642	12.2972
male*\|	. 0617935	. 01938	3.19	0.001	. 023807	. 09978	. 510582
distsec \|	-. 0179129	. 00369	-4.85	0.000	-. 025147	-. 010678	2.46057

(*) dy/dx is for discrete change of dummy variable from 0 to 1

Exercise 4 (15 points): Final $2009 \# 6$

Using panel data from 22 cities in Indiana over the period from 1981 to 1988, you want to estimate the effect of the enterprise zone program on unemployment. The variable is a dummy variable equal to 1 if the city i has an enterprise zone in year t, the variable is the number of unemployment claims filed during year t in city i, and d81, d82, , d88 are dummy variables for the years 1981 to 1988.

Model A
. reg loguclms ez

Model B
. xtreg loguclms ez, i(city) fe

Model C
. xtreg loguclms ez d82-d88, i(city) fe

1. Write the equations for the models A-C that would be estimated with these Stata commands [Be very careful with indices].
2. What does model B control for that was a possible source of bias in estimating the causal effect of ez with model A? What does model C control for that was a possible source of bias in estimating the causal effect of ez with model A?
3. From the estimation of Model C, what do you conclude about the effect of the construction of an enterprise zone on unemployment? Explain why it differs from the coefficient estimated in model B [Hint: think about the correlation between the ez variable and time].

Model A

Source I	SS	df		MS		Number of obs		198
						F (1, 196)	=	16.69
Model I	7.88619577	1	7.88	619577		Prob > F	=	0.0001
Residual \|	92.6100832	196	. 472	500425		R -squared		0.0785
						Adj R-squared	=	0.0738
Total \|	100.496279	197	. 510	133396		Root MSE	=	. 68739
loguclms	Coef	Std. Err			$p>\|t\|$	[95\% Conf. Interval]		
ez \|	-. 4725695	. 115	733	-4.09	0.000	-. 7006935		. 2444455
_cons \|	11.30057	. 055	544	202.68	0.000	11.19062		11.41053

Department of Agricultural and Resource Economics University of California at Berkeley

Model B . xtreg loguclms ez, i(city) fe					
Fixed-effects (within) regression			Number of obs		198
Group variable (i): city			Number of groups		22
R-sq: $\begin{aligned} & \text { within }=0.3083 \\ & \text { between }=0.0002 \\ & \text { overall }=0.0785\end{aligned}$			Obs per group: min		9
			avg		9.0
			max		9
			F(1, 17		78.00
$\operatorname{corr}\left(u_{\sim} i, \mathrm{Xb}\right)=-0.2147$			Prob > F		0.0000
loguclms \| Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf. Interval]	
ez \| -. 7668601	. 0868293	-8.83	0.000	-. 9382276	-. 5954927
_cons \| 11.36894	. 0353991	321.17	0.000	11.29908	11.43881
sigma_u \| . 59249639					
sigma_e \| . 40931737					
rho \| . 67693198	(fraction of variance due to u_i)				
F test that all $u_{-} \mathrm{i}=0$:	$F(21,175)=17$		7.99	Prob > F $=0.0000$	
Model C . xtreg loguclms ez d82-d88, i(city) fe					
Fixed-effects (within) regression			Number of obs		198
Group variable (i): city			Number of groups		22
R-sq: $\quad \begin{aligned} & \text { within } \\ & \text { between }=0.8148 \\ & \text { overall }\end{aligned}$			Obs per group: min $=$		9
			avg =		9.0
				max	9
			F $(8,168)$		92.36
$\operatorname{corr}\left(u_{\sim} i, X b\right)=-0.0040$			Prob > F		0.0000
loguclms \| Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf. Interval]	
ez \| -. 1044148	. 059753	-1.75	0.082	-. 2223782	. 0135486
d82 \| . 2963117	. 0564519	5.25	0.000	. 1848651	. 4077582
d83 \| -. 0584394	. 0564519	-1.04	0.302	-. 169886	. 0530071
d84 \| -. 4183358	. 058757	-7.12	0.000	-. 534333	-. 3023386
d85 \| -. 4309709	. 0626459	-6.88	0.000	-. 5546455	-. 3072963
d86 \| -. 4604488	. 0626459	-7.35	0.000	-. 5841234	-. 3367742
d87 \| -. 7281326	. 0626459	-11.62	0.000	-. 8518072	-. 604458
d88 \| -1.066817	. 0626459	-17.03	0.000	-1.190492	-. 9431425
_cons \| 11.53358	. 0325925	353.87	0.000	11.46923	11.59792
sigma_u \| . 55551522					
sigma_e \| . 21619434					
rho \| . 86846297 (fraction of variance due to u_i)					
F test that all $\mathrm{u}_{-} \mathrm{i}=0$:	$\mathrm{F}(21,168)$	$=59$.		Prob >	$\mathrm{F}=0.0000$

Exercise 5 (15 points): Final 2012 \# 3

Following are the results of two estimations for the wage of college students, where lwage is log hourly wage, college is the number of credits completed at college, exper is years of work experience, black $=1$ if African-American, hispanic $=1$ if Hispanic, and white $=1$ if neither African-American or Hispanic.
(a) Test the hypothesis at the 5% level that there is no race effect in wage determination?
(b) How do the wages of Hispanic workers compare to the wages of white workers, and of AfricanAmerican workers?
(c) How would you set up an equation that will give you the standard error on the difference in predicted wage between Hispanic and African-American workers of same education and experience?

- reg lwage college exper

Source	SS	df MS			Number of obs	200
					F(2, 197)	36.61
Model	12.9069342	26.4	46708		Prob > F	0.0000
Residual	34.7216717	197.17	52141		R -squared	0.2710
					Adj R-squared	$=0.2636$
Total	47.6286059	199.23	39728		Root MSE	$=.41982$
lwage	Coef.	Std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf.	Interval]
college	. 0906426	. 0141812	6.39	0.000	. 0626762	. 1186091
exper	. 0055367	. 0008727	6.34	0.000	. 0038156	. 0072578
_cons	1.435584	. 1148637	12.50	0.000	1.209063	1.662104

. reg lwage college exper black hispanic

Exercise 6 (15 points): Final 2011 \#4

In July 1998, ARCO acquired a major chain of gas stations, inducing a concern that it may have reduced competition and allowed itself to increase prices in the Summer of 1998. Following are average prices collected at Arco and other gas stations (the other gas stations are those not acquired by Arco) in the Los Angeles area. All prices are in $\$ /$ gallon

	May-98	Oct-98
ARCO gas stations	1.26	1.43
Other gas stations	1.29	1.41

(a) What is the difference-in-differences estimate of the impact of the ARCO acquisition on gasoline prices? Compute the value and interpret it.
(b) What equation would you estimate and what test would you perform to show that the acquisition has produced a statistically significant increase in gasoline price in the ARCO gas stations? Be very careful
(c) What is the key condition for the validity of this estimator? What data would you collect and what test would you do to support its validity in this case?

