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1. Big Picture and Notation

Definitions

• y = f (x1, x2, · · · , xk, u) = β0 + β1x + u: This is the population regression equation of y on x. We
assume that this is the true data generating process. We often assume the relationship is linear.

• µ = y− β0− β1x: The variable µ is called the error term, or disturbance in the relationship, and
represents factors other than x that affect y. The disturbance arises for several reasons, primarily
because we cannot hope to capture every influence on an economic variable in a model.

• E(y|x) = β0 + β1x: This is the population regression function (PRF), E(y|x) is a linear function
of x. The linearity implies that a one-unit increase in x changes the expected value of y by the
amount β1. For any given value of x, the distribution of y is centered about E(y|x).
Note this definition relies on the assumption (which we will investiage later) that E(u|x) =
E(u), which is essentially saying that no observations on x convey any information about the
expected value of the distrubance.1 We can also write:

yi = E(y|x) + ui

This says that any variable yi can be decomposed into a piece that is explained by x, E(y|x), and
some piece that is left over u, which we don’t observe.

• ŷ = β̂0 + β̂1x: This is the fitted regression line. It can be thought of as our best guess for y given
a certain value of x. This equation is also called the sample regression function (SRF) because
it is the estimated version of the PRF.

• y = β̂0 + β̂x + µ̂ = ŷ + µ̂ : This is now our estimated model. The hat symbol above our beta’s
indicate that these are calculated estimates of the true beta value they represent. Again we see
how we can decompose yi into two parts: a fitted value (best guess) and a residual.

• µ̂ = y− ŷ: The variable µ̂ is called the residual, it can be thought of as the deviations between
the real yi value and the predicted ŷi value.

Graphs

• Figure 1 illustrates each one of the concepts above in turn
• Figure 2 plots the population regression function of log weekly wages given schooling for men

from the 1980 US census (assume for illustration purposes, we interviewed the entire popula-
tion men in the country). The distribution of earnings is also plotted for a few key values: 4,8,12,
and 16 years of schooling.

– The PRF tells us how the average value of y changes with x: it does not say that y equals
β0 + β1x for all units in the population. For example, suppose x=4, then on average this
implies log weekly earnings of 5.9 dollars. This does not mean that everyone with 4 years
of schooling makes 5.9 dollars.

1This assumption will allow us to interpret the β coefficient (in the population) as the causal effect of an additional
unit of x on the expected value of y. We can still fit a line to our data without this assumption, but we won’t be able
to interpret the estimate as causal. More on this later (but think of investigating the impact of education on income. If
there is something unobservable like ability that varies with the level of education (higher educated people also have
more ability) such that E[u|x] 6= 0, then we wont be able to say that the coefficient associated with education reveals
the true effect of education on income because we are confounding the effect of ability and education
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– In this picture the PRF isn’t actually linear, but for the purposes of this class we assume
that it is.

• Figure 3 shows the fitted regression line for a sample of these men drawn from the census
(sample regression function). The ideal case is for ûi = 0, so that the line exactly predicts yi. But
in most cases every residual is not equal to 0, as can be seen on the figure.

– This graph shows us superimposing the true population regression equation with the
equation ŷ = β̂0 + β̂1 we estimate.
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2. Properties of β̂0, β̂1

i. Deriving the Estimators

In lecture, we considered the model yi = β̂0 + β̂1xi, and we were given the following formulas for
computing β̂0 and β̂1, which you will use on your problem set:

β̂1 =
sxy(x, y)

sx2
=

cov(x, y)
var(x)

==
∑n

i=1(xi − x̄)(yi − ȳ)
∑n

i=1(xi − x̄)2

β̂0 = ȳ− β̂1x

Where did these formulas come from? One way to derive them is to recognize the fact that
we want our regression line to minimize the distance between the observed y value and the pre-
dicted value ŷ. In other words we want to to make the set of residuals we obtain very small. There
is some debate as to how to go about doing this (some advocate minimizing the absolute value of
the residuals, while others argue for minimizing the sum of squared residuals). Minimizing the
sum of squared residual gives more weight to large residuals, that is, outliers in which predicted
values are far from actual observation (think of a line of best fit that is trying to “accomodate”
the large outliers). More importantly for our puposes, this approach will produce an estimator
with desirable properties (more on this later). This is what we refer to as OLS. Note we would
never choose our estimates to minimize, say, the sum of residuals themselves , as residuals large
in magitude but with opposite signs would tend to cancel out.

In the examples from class, the daily assignment, and the problem set, you were asked to
calculate each term (x− x̄), (y− ȳ) and plug in to the formula to comute β̂1 and then β̂0.

Question: Why are we using x̄ rather than E(x). Answer: because we only have the sample
of values we drew, and not the entire population.

Derivation

Let’s define W as we did in class, plugging in our model for ŷi:

W =
n

∑
i=1

(yi − ŷi)
2 =

n

∑
i=1

(yi − β̂0 − β̂1xi)
2

We’d like to choose β̂0 and β̂1 so that W is as small as possible. To do this we solve the following
minimization problem with respect to β̂0 and β̂1:

min
β̂0,β̂1

W =
n

∑
i=1

(yi − β̂0 − β̂1xi)
2

Taking the first order conditions (partial derivatives):

∂W
∂β̂0

= −
n

∑
i=1

2(yi − β̂0 − β̂1xi) = 0 (1)

∂W
∂β̂1

= −
n

∑
i=1

2(yi − β̂0 − β̂1xi)xi = 0 (2)

3



EEP/IAS 118 - Introductory Applied Econometrics
Fall 2015

Erin Kelley
Section Handout 2

These equations can be solved for β̂0 and β̂1. Starting with equation (1)

2

[
−

n

∑
i=1

yi +
n

∑
i=1

β̂0 +
n

∑
i=1

β̂1xi

]
= 0 Distribute the Summation[

−
n

∑
i=1

yi +
n

∑
i=1

β̂0 +
n

∑
i=1

β̂1xi

]
= 0 Get rid of the 2

n

∑
i=1

β̂0 =
n

∑
i=1

yi −
n

∑
i=1

β̂1xi Re-arranging terms

Since β0 and β1 are same for all cases in the original linear equation, this further simplifies to:

nβ̂0 =
n

∑
i=1

yi − β̂1

n

∑
i=1

xi

β0 =
1
n

n

∑
i=1

yi − β̂1
1
n

n

∑
i=1

xi

β0 = ȳ− β̂1 x̄

This is our final expression for β0. Going back to equation (2) we will solve for β1:

−
n

∑
i=1

2(yi − β̂0 − β̂1xi)xi = 0

n

∑
i=1

2xi(−yi + β̂0 + β̂1xi) = 0

n

∑
i=1

xi(−yi + β̂0 + β̂1xi) = 0

n

∑
i=1

xi(−yi + (ȳ− β̂1 x̄) + β̂1xi) = 0

n

∑
i=1

xi(−yi + (ȳ− β̂1 x̄) + β̂1xi) = 0

n

∑
i=1

xi(ȳ− yi + β̂1(xi − x̄)) = 0

n

∑
i=1

xi(β̂1(xi − x̄)) =
n

∑
i=1

xi(yi − ȳ)

β̂1

n

∑
i=1

xi(xi − x̄) =
n

∑
i=1

xi(yi − ȳ)

From some properties of summation operation (see Appendix A.1 Woolridge for the full set of
steps)

n

∑
i=1

xi(xi − x̄) =
n

∑
i=1

(xi − x̄)2 (1)

n

∑
i=1

xi(yi − ȳ) =
n

∑
i=1

(xi − x̄)(yi − ȳ) (2)
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Then plugging (1) and (2) into our previous expression:

β̂1

n

∑
i=1

(xi − x̄)2 =
n

∑
i=1

(xi − x̄)(yi − ȳ)

β̂1 =
∑n

i=1(xi − x̄)(yi − ȳ)
∑n

i=1(xi − x̄)2

This is the expression we are familiar with.

ii. Method of Moments

There is another way to estimate the parameters β0 and β1 that was introduced in class: Method
of Moments. The method of moments relies on two assumption:

1. E(u) = 0: this is simply an assumption about the distribution of the unobservables in the
population. You can think of this as normalizing all the unobserved factors affecting y, so that
their mean is zero

2. E(u|x) = E(u) = 0: this is the conditional mean assumption. Taking the example in class
(which assumed that u = ability) this just says that the average ability of individuals in the
population is the same regardless of the years of education.

Then from Assumption 2 we were able to get that E(xu) = 0:

Cov(x, u) = E[xu]− E[x]E[u] = E[xu]− E[x]× 0 = E[xu]

Then using the Law of Iterated Expectations:

Cov(x, u) = E[x, u]
= E[E[xu|x]]
= E[xE[u|x]]
= E[xE[u]]
= 0

And since Cov(x, u) = E[xu], then E[xu] = 0.

Rewriting E(u) = 0 and E[xu] = 0, we have:

E(y− β0 − β1x) = 0 (1)
E[x(y− β0 − β1x)] = 0 (2)

Then give the sample of data we have, we will choose β̂0 and β̂1 to solve the sample counterparts of
equations (1) and (2). Which gives:

1
n

n

∑
i=1

(yi − β̂0 − β̂1xi) = 0 (3)

1
n

n

∑
i=1

(yi − β̂0 − β̂1xi)xi = 0 (4)

Then, solving as we did for OLS, we get the same results for β̂0, and β̂1 (Note the fact that
OLS=MOM is not generalizable. It is true when we assume a linear relationship between x and y).
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iii. Interpreting estimates: Sign, Significance, Size

Whenever we ask you to “interpret” your estimated results, you need to address these three char-
acteristics of the each coefficient you are examining:

1. Sign:

• What sign did you expect the estimated parameter to have? Why?

• Does your estimate have this sign (i.e. are you surprised or reassured by your results)?

This is your opportunity to use your common sense, and state your prior hypothesis based
on your real-world intuition. For example: I expect higher levels of education to be associ-
ated with higher income.

2. Significance:

• Is the estimate statistically different from zero?

• What is the t-statistic of this hypothesis?

More on this later.

3. Size:

• How do changes in this variable affect the dependent variable according to your esti-
mation?

• Is this an economically meaningful effect size?

The answer to the first question will depend on the functiona form (see next section). The
answer to the second is fairly open-ended. I suggest looking at summary statistics (mean,
median, variance) of the variables in question for some perspective on size.
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3. Functional Forms Review

Preliminaries: Proportions, Percentages, and Approximations

Suppose our variable of interest x has an initial value of x0 and then increases to x1.

• A proportional change in x: x1−x0
x0

= ∆x
x0

• A percentage change in x: x1−x0
x0
× 100 = ∆x

x0
× 100

Quick Example from World Bank Data

China’s GDP per capita was 1853.45 in 1995 and in 2000 it had grown to 2673.66. Let’s call the
1995 value x0 and the 2000 value x1.

• Then the proportional change is ∆x
x0

= 820.21
1853.45 = 0.4425

• and the percentage change is ∆x
x0
× 100 = 44.25%.

In lecture, we used the fact that ∆ log x = ∆x
x , i.e. that the change in the log of a variable is equal

to the proportional change in the variable itself. Proof:

y = y0 + f ′(x0)(x− x0) Equation of a Tangent Line at x0, y0

∆y = f ′(x0)∆x

∆y =
1
x0

∆x Letting y = f (x) = ln(x)→ f ′(x0) =
1
x0

∆y =
∆x
x0

Elasticities

Definition: the percent change in one variable in response to a given percent change in another
variable, holding all other relevant variables constant. In other words it summarizes the respon-
siveness of one variable to a change in another variable.

E =
percent change in z
percent change in x

=
∆z/z
∆x/x

=
∂z
∂x

x
z

Note: As ∆x → 0, ∆z/∆x goes to the partial derivative ∂z
∂x . Economists usually calculate elasticities

only at this limit, i.e. for infinitesimal changes in x.

Example: At a point on a supply curve where the elasticity of supply η = 0, we say the supply
curve is perfectly inelastic: The supply doesn’t change as the price rises. If 0 < η < 1, the supply
curve is inelastic (but not perfectly inelastic): A 1% increase in the price causes a less than 1% rise
in quantity supplied. If η > 1, the supply curve is elastic: A 1% increase in the price causes a more
than 1% rise in quantity supplied.
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Functional Forms and Marginal Effects

Choosing an appropriate functional form is a critical choice in econometric modeling. Your choice
of model and selection of variables will greatly influence the fit of your model when mapping
independent variables to your dependent variable.

1. Linear functions and Unit-Unit changes

If we assume a linear functional form, the model is: y = β0 + β1x

Interpretation: First, take the derivative of the expression to get: dy
dx = β1. Now, (though this is

technically not very rigorous) for small enough changes in x and y, we can rewrite this as:

∆y
∆x ≈

dy
dx = β1

Then we can rearrange to see that

∆y = β1∆x

Suppose ∆x = 1, so that x changes by 1 unit. Then we can plug this into the above expression to
see that y will change by β1 units.

2. Logarithmic functions and Percent-Unit changes

If we assume a logarithmic functional form, the model is: y = β0 + β1 log(x)

Interpretation: First, take the derivative of our model, dy
dx = β1

x and again notice that we can rewrite
this:

∆y
∆x ≈

dy
dx = β1

x

Then we can rearrange to see that

∆y = β1
∆x
x

Suppose we know that x changes by 10 percent, so that the proportional change in x is 0.1: ∆x
x =

0.1. Plug this value into the expression we derived, and we see that y will change by β1 ∗ 0.1 units.
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3. Exponential functions and Unit-Percent changes

If we assume an exponential functional form, the model is: y = eβ0+β1x or log(y) = β0 + β1x

Interpretation: Once again, we take a derivative of our model with respect to x to find d log(y)
dx = β1,

and we rewrite it in terms of small changes in log(y) and x:

∆ log(y)
∆x ≈ d log(y)

dx = β1

Use the fact that ∆ log(y) = ∆y
y : (

∆y
y

)
∆x ≈

d log(y)
dx = β1

Then we can rearrange to see that

∆y
y

= β1∆x

Suppose x changes by 5 units and plug this into the expression we just derived. We see that the
proportional change in y is 5β1, so that y will change by 100 ∗ 5β1 percent.

4. Log-Log functions and Percent-Percent changes

If we assume a log-log functional form, the model is: log(y) = β0 + β1 log(x)

Interpretation: As usual, start by taking a derivative of our model, d log(y)
dx = β1

1
x and re-writing it

in terms of small changes:

∆ log(y)
∆x

≈ d log(y)
dx

= β1

(
1
x

)
⇒ β1

(
∆x
x

)
= ∆ log(y) =

∆y
y

⇒ ∆y
y

= β1

(
∆x
x

)
⇒ ∆y

y
× 100 = β1

(
∆x
x

)
× 100

Suppose we know that x changes by 10 percent. Plug this value into the expression we derived,
and we see that y will change by β1 ∗ 10 percent.

Practice

This Table (Table 2.3 in Wooldridge) is meant to practice and continue familiarizing ourselves with
these functional forms.

Model DepVar IndepVar How does ∆y relate to ∆x? Interpretation
Linear y x ∆y = β1∆x ∆y = β1∆x

Logarithmic y log(x) ∆y = β1
∆x
x ∆y = (β1/100)%∆x

Exponential log(y) x ∆y
y = β1∆x %∆y = (100β1)∆x

Log-Log log(y) log(x) ∆y
y = β1

∆x
x %∆y = β1%∆x
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Examples

Example 1. Suppose you’ve collected data on household gasoline consumption (gallons) in the Bay Area
and gas prices ($ per gallon), and you estimate the following model:

log(gasoline) = 12− 0.21price

According to the model, how does gas consumption change when price increases by $1?

Example 2. Professor Villas-Boas in the ARE/EEP department used scanner data from a national gro-
cery store to investigate how chicken consumption was affected by gas prices. Specifically, she looked at
the share of chicken purchases that were made while the chicken was on sale. The following model was
estimated:

log(chickenshare) = 0.83 + 0.491 log(gasprice)

How does chickenshare change if gas prices rise by 2%? Does this relationship make sense?

Example 3. Suppose you’ve collected data on CEO salaries (hundred thousand $) and annual firm sales
(million $), and you estimate the following model:

salary = 2.23 + 1.1 log(sales)

According to the model, how does salary change if annual firm sales increase by 10%?

Exercise Wooldridge exercise 3.4: Here is the result of a regression of median salary for new law school
graduates on their LSAT score, median undergraduate GPA of the class, number of volumes in the law
library, cost of attendance, and rank of the law school (1 being the best). The unit of observation is a law
school:

̂log(salary) = 8.34 + .0047lsat + .248gpa + .095 log(libvol) + .038 log(cost)− .0033rank

How does the median salary change when libvol (volumes in law library) change?

The coefficient on rank is pretty small. Does this mean the rank of a law school doesn’t matter a lot for
graduates’ salaries?
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4. Goodness of Fit, R2

R2 is a measure of the “goodness of fit,” or how well our regression line fits the data, so that we are able
to evaluate the quality of the model after estimating it. Specifically, R2 is the proportion of variation in our
dependent variable, y, that is explained by our model, β0 + β1x.

Why is the R2 important? Consider the following data from the World Bank that has this singular shape
but we apply the linear model to it anyway. The line that minimizes the sum of squared errors is a flat line
even though this clearly misses the underlying relationship between the variables. How can we tell that
this is a poor model without looking at it? By looking at the R2.
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Before giving the explitic formula for the R2, let’s define a few additional terms. Consider these three
variances, which we will call the Sum of Squares Total (SST), the Explained sum of squared (SSE), and the
Sum of Squares Residual (SSR).

SST = ∑n
i (yi − ȳ)2

SSE = ∑n
i (ŷi − ȳ)2

SSR = ∑n
i (yi − ŷ)2

SST is a measure of the total sample variation in the yi, that is it measures how spread out the yi are in
the sample. Similarly SSE measures the sample variation in the ŷi (where we can use the fact ¯̂y = ȳ).
Finally the SSR measures the sample variation in the residuals ûi. The total variation in y can always be
expressed as the sum of the explained variation SSE, and the unexplained variation SSR. To see this, recall
that yi = ŷi + ûi, i.e. the observed value of yi is equal to the predicted value ŷi and the difference between
the two (the residual) ûi. The formal proof is in Woolrdige p.39. Thus we can write,

SST = SSE + SSR

Next, let’s define the R2. We want the R2 to express how well the regression line fits the data. One way
to go about this is to express the fraction of the sample variation that is explained by x (i.e the proportion
of variation that is explained by our model). In the sense that if we have a good model, then the sample
variation in y should be mostly explained by x (and not by the residual that we don’t explicity oberve)).

R2 =
SSE
SST

=
SSE

SSE + SSR
= 1− SSR

SST

The R2 is always less than 1. Why? Well it’s important to understand that if our variables x and y have
some kind of relationship, knowing what xi is should give us a little more information about what y is. Ex:
if I know nothing about an individual but had to determine the probability that he/she had lung cancer, I
would guess the average. However, if I find out that this particular individual is a smoker, I might think
there’s a slightly higher than average probability that he/she has cancer. We should think of ŷi as a more
knowledgeable guess for yi than ȳ as it uses xi. Thus, the difference between what we observe and what we
predict (SSR) should be smaller than the difference between what we observe and the average (SST). Thus
SSR/SST < 1 and the R2 = 1− SSR/SST will also be less than 1. If the model provides a perfect fit to the
data, the R2 = 1.
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