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Abstract
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and intuitive estimation method, and use our model estimates to simulate how borrowers�default behavior would
change under various counterfactual scenarios. The counterfactual exercises allow us to quantify the importance
of various factors, such as home price declines and loosened underwriting standards, in explaining the recent
increase in subprime defaults. Furthermore, we use simulations to assess the e¤ects of principal write-downs and
other foreclosure mitigation policies on the behavior of various subsets of borrowers.
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1 Introduction

In this paper, we estimate and simulate a dynamic structural model of subprime borrowers� default

behavior. The collapse of the subprime mortgage market and its subsequent role in triggering the current

recession lends especial importance to understanding the key drivers behind the increase in defaults.

We use our model to quantify the relative importance of various potential drivers of default, such as

deep home price declines and loosened underwriting standards. Another key object of interest is how

subprime borrowers�default behavior would respond to the implementation of various policy proposals

such as principal write-downs. We use our model to assess the e¤ectiveness of foreclosure mitigation

policies by simulating borrowers�default decisions under various counterfactual scenarios.

We model borrowers�default decisions as a dynamic programming problem. In each period, a bor-

rower takes one of three possible actions: defaulting, prepaying the loan, or continuing to make just

the regularly scheduled payments (which we call �paying� throughout the rest of the paper). Because

mortgages have a �xed maturity, commonly 30 years, we model borrowers�problem as a �nite-horizon

dynamic programming problem. Also, once a borrower defaults on a loan, there is no further decision to

be made and no further �ow of utility starting from the next period. We propose a simple estimation

method that takes advantage of the presence of this terminal action.

Estimation of borrowers�dynamic programming problem using the nested �xed point algorithm (Rust,

1994) would be computationally burdensome given the high-dimensional state space and the large number

of borrowers in our data. We instead estimate our model using a variant of the two-step estimation method

proposed by Bajari, Benkard, and Levin (2007; BBL henceforth). In the �rst step, we recover decision

rules as a �exible function of state variables, which include home prices, the remaining balance on the

loan, monthly payments due, and borrower and loan characteristics such as credit scores. Because the

problem has a �nite horizon, the time to maturity itself is a state variable. Thus, we estimate decision

rules separately for each time period. The richness and large size of our dataset allow us to be very

�exible in our speci�cation of the decision rules. Also as part of the �rst step, we use standard time-series

econometric techniques to estimate the laws of motion governing the evolution of these state variables. In

our modeling, we take a partial-equilibrium approach by treating the evolution of macroeconomic state

variables, such as the change in home prices and unemployment rate in each geographic market, as an

exogenous process.

The second step of the estimation exploits our ability to directly recover the choice-speci�c value

functions from the observed choice probabilities, by means of the Hotz-Miller inversion (1993). In contrast

to the usual case in which only the di¤erences in choice-speci�c values between alternative actions are

2



recoverable, the presence of a terminal action with a known continuation payo¤ (namely, zero) allows

us to recover the actual level of the ex ante expected continuation value associated with each action.

Using the estimated transition function of the state variables and an assumption about the distribution

of the errors, we construct the expected continuation value for prepaying and paying, respectively, via

one-period forward simulation. Our proposed estimator treats the constructed continuation value and

other state variables in the period utility as regressors and allows us to recover structural parameters

using simple OLS or SUR.

This estimation method is intuitive and easy to implement. It also addresses one of the key data

challenges we face. Because subprime mortgages typically prepay or default after only a short amount

of time, and in any case are a relatively new product that was only introduced in recent years, we lack

observations for loans close to maturity. Thus, we cannot recover decision rules for loans close to maturity

in our �rst step, which would pose a signi�cant problem if we were to use the typical forward simulation

approach of BBL. However, our proposed estimation method does not su¤er from this problem as it

requires forward simulation for one period ahead only. Another advantage of our estimation method

is that it makes identi�cation of the discount factor very clear. We prove that the discount factor is

identi�ed in our model and present our estimate of the discount factor, along with estimates of other

structural parameters.

Once we estimate our model, we consider various counterfactual scenarios. In particular, we conduct

counterfactual analysis in two di¤erent ways. First, we use the �rst-step policy function estimates to

simulate borrowers�behavior under various counterfactual regimes. This approach di¤ers from the more

common approach, which is to compute the counterfactual outcomes by re-solving for the optimal behavior

using the structural parameters from the second step. The usual argument for re-solving for the optimal

behavior is to address the Lucas critique, which applies whenever a proposed shock would change the

equilibrium behavior such that there is a new reduced-form relationship between state variables and the

policy function. However, the panel structure of our data allows us to address the Lucas critique in a

novel way. Because the panel structure allows us to identify the policy function over a wide range of

state variables at each point in time, so long as we limit ourselves to studying policy interventions that do

not go �out of sample�or change the state transition function, the new equilibrium behavior is correctly

captured by the reduced-form policy function. In other words, if a counterfactual involves state-variable

realizations that are actually observed for a subset of borrowers in the data, then the reduced-form policy

function is still a valid description of how the borrowers behave in the new equilibrium. This approach

is computationally much lighter than re-solving the dynamic programming problem for each borrower,

which is a considerable advantage given the large size of our data.
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Second, we also conduct counterfactual analysis in the more typical way, using structural estimates

recovered in the second step. Doing so allows us to compare predictions based on the two di¤erent methods

and to show that counterfactuals based on the �rst-step estimates are valid under certain conditions.

Furthermore, as we might expect, there are certain counterfactuals that can be analyzed only using the

structural estimates, namely any scenarios involving transitions to states not spanned by the estimation

sample or resulting in changes to the state transitions themselves. In particular, we explore the e¤ect

that a key government program called HAMP (Home A¤ordable Modi�cation Program) would have had

on borrower behavior under the hypothetical scenario in which the program had been introduced sooner

and made available to borrowers during our sample period.2 Unlike the previous counterfactuals, this

one requires re-simulation of borrowers� optimal behavior using the structural estimates, because the

modi�cations prescribed by HAMP often result in mortgages with longer maturities (up to 40 years) and

lower interest rates (as low as 2 percent) than those seen in our sample.

Our estimation exploits a unique dataset from LoanPerformance, which covers the majority of sub-

prime and Alt-A mortgages3 that were securitized between 2000 and 2007. The unit of observation is

an individual mortgage observed at a point in time. For each loan, we observe information from the

borrower�s loan application, including the terms of the contract, the appraised value of the property, the

loan-to-value (LTV) ratio, the level of documentation, and the borrower�s credit score at the time of

origination. We also observe the month-by-month stream of payments made by the borrower as well as

whether the mortgage goes into default or is prepaid. To track movements in home prices, we merge the

LoanPerformance data with zip code-level home price indices, also from LoanPerformance.

This paper contributes to the literature by estimating a fully dynamic model of borrower behavior.

The decision to default clearly has dynamic implications given the presence of �xed costs associated with

default, such as the lasting impact of a damaged credit history. Not correctly capturing such dynamic

features leads to inconsistent estimates and may generate misleading welfare implications. For the most

part, existing empirical work on loan default uses a duration framework (Deng, Quigley and van Order,

2000; Foster and Van Order, 1984), which does not explicitly address the dynamic features of borrowers�

decisions as expectations do not play a role in the duration framework. The paper also makes a contri-

bution by demonstrating that a certain set of interesting counterfactuals can be successfully performed

using �rst-step reduced-form policy function estimates. This is an important point that may apply to

many empirical problems, because re-computing the equilibrium is often computationally burdensome,

while performing simulations using the �rst-step estimates is much easier. Finally, our paper informs our

understanding of borrowers�default incentives and evaluates welfare e¤ects of key policy tools, a topic of

2 In reality, HAMP was introduced in 2009.
3Alt-A�s are a type of mortgage that is riskier than prime but less risky than subprime. In this paper, we casually use

the term �subprime market� to refer to both subprime and Alt-A mortgages.
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immense interest to policymakers.

The rest of this paper proceeds as follows. In Section 2, we present a dynamic model of borrower default

on mortgage loans and discuss identi�cation of the discount factor. Section 3 discusses our estimation

methodology. In Section 4, we describe the data. Section 5 presents estimation results and Section 6

discusses our counterfactual analysis. Section 7 concludes the paper.

2 Model

We formulate borrowers�decisions using a dynamic, discrete-time, single-agent model. Each agent enters

a mortgage contract lasting T time periods, and solves a dynamic programming problem with a �nite

time horizon ending at T . The components of the model are as follows.

2.1 Decision

At each time period t over the life of borrower i�s loan, the borrower chooses a decision ai;t from the �nite

set D = f0; 1; 2g.4 The possible actions in D are to default (ai;t = 0), to prepay the mortgage (ai;t = 1),

or to make just the regularly scheduled payment for the current time period (ai;t = 2). We assume that

there is no interaction among borrowers, which implies that our setup is a single-agent model. Default is

a terminal action: once a borrower defaults, there is no further decision to be made and no further �ow

of utility starting from the next period.

2.2 Period Utility and State Transition

The per period utility is as follows:

U(ai;t; si;t) = u(ai;t; si;t) + "i;ai;t;t

We assume that the per-period utility of the borrower has a deterministic component that is a time-

invariant function of the state and action (u(ai;t; si;t)). As is typical in discrete-choice models, we make

the following normalization: u(ai;t = 0; si;t) = 0. The state vector si;t includes borrower i�s characteristics,

current home value Vi;t, monthly payments pi;t, etc. Following the literature, we assume that agents also

4Note that we use t to denote the loan�s age, not calendar time. A 36-month old loan will have t = 36 whether the
loan was originated in January 2003 or October 2007. In our estimation, we limit our attention to all loans with the same
maturity (30 years) and can therefore think of t as also representing the time to maturity.
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receive a stochastic, choice-speci�c shock to payo¤s "i;ai;t;t, in order to allow for some degree of randomness

in the action observed for each state. We assume that the shocks have a type I extreme value distribution,

and are iid across borrowers, across actions, and over time. Agents are impatient and discount the future

payo¤s with the discount factor �.

The state variables in our model evolve according to the transition function g(si;t+1jai;t; si;t). Most

state variables evolve according to an exogenous process, and their distribution at time t + 1 does not

depend upon the borrower�s action, ai;t. The only state variable whose transition is in�uenced by ai;t is

the monthly payment, pi;t. When borrower i prepays in period t, we assume that the borrower re�nances

into a new loan that matures at the same time as the old loan5 and whose interest rate is equal to the

current market interest rate.6 Thus, the payment level will depend upon the borrower�s choice. For

the rest of this paper, we will use g(si;t+1jsi;t; ai;t) to denote the state transitions, with the implicit

understanding that transition of most state variables is not a¤ected by ai;t.

2.3 Value Function

The value function of the borrower�s problem for t < T is as follows:

Vt(si;t) = E�;g(s)

"
TX
�=t

�
���tU(ai;� ; si;� )

��1
�

�1=1
1(ai;�1 > 0)

�
jsi;t

#
= max

k=0;1;2
fu(ai;t = k; si;t) + �E [Vt+1(si;t+1)jsi;t; ai;t = k] + "i;k;tg (1)

= max
k=0;1;2

fVt(ai;t = k; si;t) + "i;k;tg

In the above equation, � represents the optimal policy function. The term
��1
�

�1=1
1(ai;�1 > 0) captures

the fact that once a borrower defaults, there is no further �ow of utility starting from the next period.

We denote the choice-speci�c value function by Vt(ai;t = k; si;t). Because the period utility of default

is normalized to zero (u(ai;t = 0; si;t) = 0) and default is a terminal action, the choice-speci�c value of

default is zero, i.e., Vt(ai;t = 0; si;t) = 0:

For the �nal period T , the choice-speci�c values for the remaining actions (prepay or pay) are equal

to the deterministic component of the period payo¤ u(ai;T ; si;T ) plus the house value in period T , as the

5For example, if the borrower re�nances when the loan is 50 months old, we assume that the new loan will mature in
T � 50 months.

6We assume that the market interest rate available to borrower i at time t is equal to rmi;t = r
m
t (zi;t)+ �i, where r

m
t (zi;t)

is the prevailing rate available for loans with observable characteristics zi;t, and �i is a borrower-speci�c spread that is
constant over time. For a given borrower, we can identify �i as the residual from regressing the observed interest rate on
the observed characteristics of the original loan.
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borrower obtains full ownership of the house once the loan matures. The choice-speci�c value of default

in period T is equal to 0 since the borrower does not get to keep the house if he defaults. The optimal

solution exists and it is unique by construction based on backward induction.

2.4 Equilibrium Probabilities

An advantage of working with extreme-value�distributed errors is that they generate rather simple equi-

librium probabilities. In our model, the probabilities of default, prepay, and pay at a given state are:

�0;t(si;t) = Pr(ai;t = 0jsi;t) = exp(Vt(ai;t=0;si;t))
2P

k=0

exp(Vt(ai;t=k;si;t))

�1;t(si;t) = Pr(ai;t = 1jsi;t) = exp(Vt(ai;t=1;si;t))
2P

k=0

exp(Vt(ai;t=k;si;t))

�2;t(si;t) = Pr(ai;t = 2jsi;t) = exp(Vt(ai;t=2;si;t))
2P

k=0

exp(Vt(ai;t=k;si;t))

(2)

The Hotz-Miller inversion typically allows identi�cation of the di¤erence in choice-speci�c values, as

follows.
log
�
�1;t(si;t)
�0;t(si;t)

�
= Vt(ai;t = 1; si;t)� Vt(ai;t = 0; si;t)

log
�
�2;t(si;t)
�0;t(si;t)

�
= Vt(ai;t = 2; si;t)� Vt(ai;t = 0; si;t)

(3)

In our model, we can identify the choice-speci�c values themselves because default is a terminal action,

pegging the choice-speci�c value of default to 0: that is, Vt(ai;t = 0; si;t) = 0: Thus we can recover the

ex ante value function, Vt(si;t), directly from the data. Our estimation method, discussed in the next

section, exploits this feature of the model.

2.5 Identi�cation of Discount Factor

Given the extreme value assumption, we can express the ex ante value function as

Vt(si;t) = log

 
2X

k=0

exp (Vt(ai;t = k; si;t))

!
= log

�
1

�0;t(si;t)

�

Then, combining the expression of the Hotz-Miller inversion (3) and the Bellman equation (1), we
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obtain,

log
�
�1;t(si;t)
�0;t(si;t)

�
= u(ai;t = 1; si;t) + �E

h
log
�

1
�0;t+1(si;t+1)

�
jsi;t; ai;t = 1

i
log
�
�2;t(si;t)
�0;t(si;t)

�
= u(ai;t = 2; si;t) + �E

h
log
�

1
�0;t+1(si;t+1)

�
jsi;t; ai;t = 2

i (4)

We can nonparametrically recover �0;t(si;t), �1;t(si;t) and �2;t(si;t) from the data and we can also

construct E
h
log
�

1
�0;t+1(si;t+1)

�
jsi;t; ai;t = k

i
because we can estimate the state transitions directly from

the data. Thus, if the discount factor is known, we can directly recover the per period utility nonpara-

metrically from the data. However, we can make an even stronger statement.

Proposition 1 Suppose that we observe the panel of borrowers over two time periods. If the discount

factor � is known, then the per period utility for the pay and prepay options is nonparametrically identi�ed.

Moreover, if we observe the panel with at least three periods and there exists �s 2 S such that

E [log (�0;t+1(si;t+1)) jsi;t = �s] 6= E [log (�0;t+2(si;t+2)) jsi;t+1 = �s]

then both the discount factor and per-period utility are identi�ed from this panel.

Proof. Above, we have demonstrated identi�cation of the per-period utility with known �. Now we show

that we can identify the discount factor as well, as long as we have a three-period panel of borrowers.

For each action we can write

u(ai;t = k; si;t = �s) = log
�
�k;t(�s)
�0;t(�s)

�
� �E

h
log
�

1
�0;t+1(si;t+1)

�
jsi;t = �s; ai;t = k

i
and u(ai;t+1 = k; si;t+1 = �s) = log

�
�k;t+1(�s)
�0;t+1(�s)

�
� �E

h
log
�

1
�0;t+2(si;t+2)

�
jsi;t+1 = �s; ai;t+1 = k

i
Recalling that the per period utility function does not depend on time, we can take the di¤erence between

the two equations and express

� =
log(

�k;t+1(�s)
�0;t+1(�s)

�0;t(�s)
�k;t(�s)

)

E [log (�0;t+1(si;t+1)) jsi;t = �s; ai;t = k]� E [log (�0;t+2(si;t+2)) jsi;t+1 = �s; ai;t+1 = k]

By the assumption of the proposition, the denominator of this expression is not equal to zero. As a result,

the discount factor is identi�ed. Q.E.D.

In general, it can be shown that for reasonable values of the remaining parameters, our model implies

a diminishing incentive to default as the loan approaches maturity, satisfying the assumption of the

proposition. In fact, the probability of default decreases over time even if the state variables s do not

change, and this decrease is reinforced when the homeowner�s equity increases over time as he pays down

the loan. Unlike the prior literature on identi�cation of time preferences (Magnac and Thesmar, 2002;
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Fang and Wang, 2010), our identi�cation of the discount factor does not require the presence of a variable

that a¤ects the state transition but not the per period utility. In fact, we can identify the discount factor

even if all state variables are constant over time. The two features that are important for identi�cation

of the discount factor in our setup are the �nite horizon and the presence of a terminal choice.

3 Empirical Methodology

3.1 Estimation

Next we consider a semiparametric plug-in estimator for the considered strategic decision model. The

plug-in estimator will be constructed in two steps. We consider the series estimator with the vector

of orthogonal polynomials qK(�). We then form the matrix QK =
�
qK(s1); : : : ; q

K(sT )
�
. Then the

semiparametric estimation procedure can be constructed by �regression�on the vector of polynomials.

Step 1 First, we use the observed data on the mortgage decisions to estimate the choice probabilities

non-parametrically. Suppose that the total number of consumers in the panel is J and the total number

of observed time periods is T �. Then, if dai;t is a binary indicator of action a 2 f0; 1 ; 2g and Ti is the

total time to maturity for the mortgage issues for consumer i, the choice probability can be estimated,

for instance, using a multi-dimensional kernel K(�) such that

b�k;t(s) = qK0 (s)
0@ 1

JT �

T�X
t=1

JX
j=1

qK (sjt) q
K0 (sjt)

1A�1
1

JT �

T�X
t=1

JX
j=1

d
aj;t=k
j;t qK (sjt)

The number of series terms will be a function of the total sample size with K ! 1 as JT � ! 1.7

Alternatively, one can use an orthogonal sieve-based estimation procedure where we would project the

indicator daj;t on the sieve terms. As we will see, for our distribution results to be valid (and, thus, the

�rst-stage estimation error to have no impact on the convergence rate for the estimated parameters), it

is su¢ cient to �nd an estimator for the choice probabilities with a uniform convergence rate of at least

(JT �)1=4. Such estimators will exist if the choice probability is a su¢ ciently smooth function of the state.

Using the estimated choice probabilities, we can use the assumption that the unobserved error terms

have a logistic distribution and explicitly express the choice-speci�c value function for the pay and pre-pay

options as bVt(ai;t = k; si;t) = log� �̂k;t(si;t)
�̂0;t(si;t)

�
:

7We provide the detailed conditions further in this section.
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Note that we don�t have to perform any iterations to recover the choice-speci�c value function in our

model. It can be recovered directly from the estimated choice probabilities. Using the estimated proba-

bility of default, we can also estimate the ex ante value function as

bVt(si;t) = log� 1

�̂0;t(si;t)

�
:

The recovered value functions will have the rate of convergence that is equal to the convergence rate of

the estimated choice probabilities, under speci�c support conditions on the state variables.

Step 2 To perform the second step, we estimate the expected ex ante value. This estimate is based

on the integration of the ex ante value function with respect to the conditional distribution of the future

state draw. This can be done, for instance, by using the series estimator:

bE �Vt+1(si;t+1) �� si;t = s� = qK0 (s)
0@ 1

JT �

T�X
t=1

JX
j=1

qK (sjt) q
K0 (sjt)

1A�1
1

JT �

T�X
t=1

JX
j=1

Vt+1(sj;t+1)q
K (sjt)

Then considering the parametric speci�cation of the consumer�s payo¤s de�ned by uk(sit; �), we

estimate parameter vector � and the discount factor. In case where the payo¤s are de�ned by the linear

indices of the state variables, we estimate the parameters by running the second-stage regression of

the estimated choice-speci�c payo¤ of bVt(ai;t = k; si;t) on bE �Vt+1(si;t+1) �� si;t� and the state variables.
The coe¢ cient estimates for the state variables will correspond to the parameters � in the linear index

characterizing the per period payo¤, and the coe¢ cient of the expected ex ante value function will

correspond to the estimated discount factor.

Note that our estimation procedure requires forward simulation for one period ahead only. This is

a very useful feature for our setup, since we have data only on the �rst several years of loans, although

loans mature in 30 years. Because the forward simulation approach proposed in BBL requires forward

simulation for all future periods, we would need to extrapolate the recovered policy function to periods

close to maturity, which are likely to be very imprecise due to nonstationarity. Our approach avoids this

issue and still allows us to estimate structural parameters.

3.2 Asymptotic Theory for the Plug-In Estimator

We consider a two-step sieve estimation procedure. Given that we are analyzing the single-agent dynamic

optimization problem, the goal is to characterize the distribution and provide a two step estimator such

that in the �rst step we can estimate the policy function at a su¢ ciently fast rate and in the second
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stage we can estimate the parameters of the payo¤ function at a parametric rate. In the semiparametric

second stage estimation, we denote the parameter vector .

ASSUMPTION 1

1. Parameter space � is a convex compact set. Pro�t function ui (ai; s; ) is continuous in  for each

(ai; a�i) 2 A. Moreover, for each  2 � there exists an envelope function F (�):

jui (ai; s; )j � F (ai; s);

such that E[F 2] <1

2. The data
n
fa1t; : : : ; aIt; st; st+1gT�1t=1

oI
i=1

are generated by the stationary distribution determined

by Markov transition kernel for the state variable. The Markov transition kernel Kt(�; s), corre-

sponding to the state transition at time t is continuous with full support on S for each s 2 S and is

di¤erentiable in s for each t � 1. Moreover, for each s 2 S
R
Kt(s02 ds0 <1

3. The approximating series expansion fqk(m)g forms a basis in Ck(m) (S), such that the eigenvalues

of E
�
qk(m) (st+1) q

k(m)0 (st+1) jst = s
�
are bounded away from zero for all s 2 S.

4. The components of the basis jqk(m)j � C for some �nite C.

5. For any convex compact set T � S, sieves provide su¢ ciently good approximation:

inf
�2Rk(m)

Z
s02S

Kt(s0; s) ds0 � �0k(m)
 = O(k(m)��);

for some � < 1
2 and all t � 1.

Assumption 1 delivers the conditions that assure that the �rst-stage estimator will be consistent.

Moreover, provided that the estimator is di¤erentiable, we will be able to deliver the convergence rate

for its estimation.

Theorem 2 Under Assumption 1.2-5, denoting the overall data size M , conditions k(M)=M !1 and

M=k(M)1+2� ! 0, we obtain that

k�̂k;t(s)� �k;t(s)k = Op

 r
k(M)

M

!

This theorem establishes the convergence rate for the �rst-stage estimator. Provided that we assumed

di¤erentiability of the Markov kernel, we can use the existing statistical results to establish the optimal
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convergence rate. In particular, if the state variable has d dimensions, then the optimal (fastest) conver-

gence rate is M
2

4+d . The convergence rate of the �rst-step estimator is important because it allows us to

establish the parametric convergence rate for the second step estimator.

Theorem 3 Under Assumption 1, provided that M=k(M) = o(M1=4) and M=k(M)1+2� ! 0, we obtain

that for the second-step estimator ̂:

k̂ � k = O(M�1=2):

We note that the crucial condition to attain the parametric convergence rate for the second step

estimator is a su¢ ciently fast convergence rate for the �rst step estimator. This implicitly imposes the

restriction on the dimensionality of the vector of state variables. In order to obtain a second stage

estimator convergent at a parametric rate, we need the dimensionality of the state variable vector not to

exceed 4. If we use a larger state space, then we need to impose additional smoothness assumptions on

the Markov transition kernel. In particular, if we allow the Markov transition kernel to have 2 continuous

derivatives, then the allowed dimensionality of the state variable vector will not exceed 6.

This means that one needs to be careful in coordinating the dimensionality of state space and smooth-

ness restrictions on the transition of the state variable. If the relative rate condition of Theorem 3 is

satis�ed then we can establish the following result.

Theorem 4 Suppose that E
��

@ui(ai;s;)
@

��
=0

�2�
<1 and random variable �k;t(sit) for a �xed t satis-

�es the Lindeberg condition. Moreover, suppose that Assumption 1 is satis�ed and the �rst stage estimator

satis�es M=k(M) = o(M1=4) and M=k(M)1+2� ! 0. Then

p
M(̂ � 0)) N (0;
);

for some covariance matrix 
. Moreover, the bootstrap is valid.

4 Data

We use data from LoanPerformance on subprime and Alt-A mortgages that were originated between

January 2000 and September 2007 and securitized in the private-label market. The coverage of the Loan-

Performance dataset is extensive, with more than 85% of all securitized subprime and Alt-A mortgages

included in the dataset.

For each loan, we observe the loan terms and borrower characteristics reported at the time of origina-
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tion, such as the type of mortgage (�xed rate, adjustable rate, etc.), the initial contract interest rate, the

level of documentation (full, low, or nonexistent8), the appraisal value of the property, the LTV ratio, the

location of the property (by zip code), and the borrower�s FICO score. We focus on 30-year �xed-rate

mortgages, the most common mortgage type. We further restrict our sample to loans that are �rst liens

and are for properties located in 20 major MSAs.9

The data also track each loan over the course of its life, reporting the outstanding balance, delinquency

status, and scheduled payment in each month. We de�ne default as occurring if the loan is delinquent for

more than 90 days, a common de�nition of default in the mortgage literature. Default is a terminal event,

so if a loan defaults in month t, the loan is no longer in the sample starting from month t+1. We de�ne

prepayment as occurring if the loan balance goes to zero before maturity because the borrower pays the

loan in full (likely through re�nancing). We track the status of each loan in our sample through December

2009. This means that we have data on only up to the �rst 10 years of subprime loans, although the

loans have maturity of 30 years. However, our proposed estimation methodology does not su¤er from this

data constraint as we don�t have to forward simulate for all future periods: One-period ahead forward

simulation is su¢ cient for identi�cation of the parameters under our estimation methodology.

We do not directly observe the borrower�s income at the time of origination, our proxy for current

income. Instead, we impute it based on the reported front-end debt-to-income ratio.10 The front-end

debt-to-income ratio is available only for a very small fraction (3.5%) of all loans, signi�cantly reducing

our sample. In our earlier work (Bajari, Chu and Park, 2011) we found that this sample restriction did

not a¤ect our main �ndings on borrowers�default behavior. Furthermore, even with this restriction, we

still have more than half a million borrowers in the sample. Hence, we use this sample throughout this

paper. For more detailed discussions of the LoanPerformance data, see Demyanyk and van Hemert (2009)

and Keys et al. (2010).

Data on monthly county-level unemployment rates, our proxy for individual-level unemployment,

come from the Bureau of Labor Statistics. To track movements in home prices, we use housing price

indices (HPI) at the zip code level, also from LoanPerformance. The home price indices are reported

at a monthly frequency, and are determined using the transaction prices of the properties that undergo

repeat sales at di¤erent points in time in a given geographic area. We impute the current value of a home

8Full documentation indicates that the borrower�s income and assets have been veri�ed. Low documentation refers
to loans for which some information about only assets has been veri�ed. No documentation indicates there has been no
veri�cation of information about either income or assets.

9The MSAs included in our sample are Atlanta, Boston, Charlotte, Chicago, Cleveland, Dallas, Denver, Detroit, Las
Vegas, Los Angeles, Miami, Minneapolis, New York, Phoenix, Portland, San Diego, San Francisco, Seattle, Tampa, and
Washington D.C.
10We assume that household income stays constant over time, and approximate it by the scheduled monthly payment

divided by the front-end debt-to-income ratio, both reported as of the time of origination. The front-end ratio measures
housing-related principal and interest payments, taxes, and insurance as a percentage of monthly income.
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by adjusting its appraised value at the time of origination by the index. Because home-price declines

are thought to be one of the main drivers behind the recent surge in mortgage defaults, and because

there is a high degree of variation across locations in home-price movements, it is important to have

home-price data at a �ne geographic level. Hence, we believe that the use of the zip-code level HPI from

LoanPerformance enhances the robustness of our results. By contrast, most previous studies on mortgages

and on housing markets in general have used the HPI from Case-Shiller, which is only at the MSA level.

5 Estimation Results

5.1 Results on First-Step Estimates

We start by discussing �rst-step estimates of the policy function. Because the policy function estimates

are reduced-form in nature, the estimates themselves do not have well-de�ned economic interpretations.

Thus, we focus on the goodness of �t of the policy function estimates, instead of discussing the coe¢ cients.

Having policy function estimates that do a reasonable job of matching empirical probabilities is crucial

for the plausibility of the counterfactual results. We investigate the performance of our policy function

estimates in three ways. First, we report within-sample �t of our estimates, where we do the �rst-step

estimation using the full sample and compare the predicted probabilities of default, prepay and pay in

each period to the empirical counterparts. Second, we report out-of-sample �t of our estimates, where

we use a half of the sample for estimation and the other half for validation, and compare the predicted

probabilities in each period of the validation sample to the empirical counterparts. Third, for each loan

in the data, we start with its �rst observation and forward simulate the borrowers�decisions until the

end of 2009 using the �rst-step estimates of policy function and state transitions. We then compare the

predicted probability of eventual default or prepay by the end of 2009 to the empirical counterpart. The

�t in the previous two methods depends on the precision of policy function estimates only (since we use

the realized values of state variables in each period in computing the predicted probabilities of default,

prepay and pay), while the �t in this third method depends on the precision of both policy function

estimates and state transition estimates. More noise is introduced in the third method, so the �t is

necessarily worse.

Table 2 shows within-sample �t, reporting the overall �t as well as �t by various subgroups. The table

clearly shows that the within-sample �t of the �rst-step policy function estimates are excellent.

[Table 2 about here]

14



Because we included very �exible splines of the state variables in estimation of the policy function,

one might worry about over-�tting and potentially poor performance of out-of-sample predictions. To

check this possibility, we split our sample into two and use one half for estimation and the other half for

validation. The �t for the validation sample is reported in Table 3.

[Table 3 about here]

Table 3 shows that the �t is excellent even in the validation sample, although, not surprisingly, it

is slightly worse than the within-sample �t in Table 2 (BTW this discrepancy might disappear when

Sean does estimation using the full sample). Although the �t is great in Tables 2 and 3, they only re�ect

accuracy of the �rst-step policy function estimates. Another critical piece that will play an important

role in counterfactual simulations is the accuracy of the estimated state transitions. To evaluate the

combined �t of estimated policy functions and transition functions, we start with the �rst observation

of each borrower, simulate the path using the estimated policy functions and transition functions, and

then compare the simulated path to the actual data. Table 4 reports comparison of the predicted paths

against the actual paths. In particular, we compare the probability of eventual default or prepay by the

end of 2009 (which corresponds to the end of the estimation sample so that we can make meaningful

comparison between predictions and data) as well as the duration until default or prepay.

[Table 4 about here]

The table again shows comparisons for the overall sample as well as for various slices of the sample. It

is clear from Table 4 that the �t is not as good as in previous tables due to the additional noise introduced

by estimation error in state transitions. However, we still �nd that the �rst-step estimates explain the

data very well.

5.2 Results on Second-Step Estimates

Following the estimation procedure outlined in Section 3.1, we estimate structural parameters of the per

period utility as well as the discount factor. We use seemingly unrelated regression (SUR) for the system

of two equations (one whose dependent variable is log(�1;t(si;t)�0;t(si;t)
) and another whose dependent variable is

log(
�2;t(si;t)
�0;t(si;t)

)). [We would probably need to change speci�cations of per period payo¤, since the current

speci�cations can�t explain why the probability of prepay would decrease as loan gets close to maturity]

We impose cross-equation restrictions that the discount factor should be the same in the prepay and pay

equations and that the degree of disutility from payment should be the same in both equations. Table 5

reports our estimates of the structural parameters.
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[Table 5 about here]

[Discuss results]

6 Counterfactual Analysis

In this section, we consider various counterfactual scenarios. In particular, we conduct counterfactual

analysis in two di¤erent ways. First, we use the �rst-step estimates to simulate borrowers� behavior

under various counterfactual regimes. Second, we use the structural parameter estimates to re-solve for

the optimal behavior and compute the counterfactual outcomes. This second approach is the one typically

used in the literature. The �rst approach is an unconventional approach and deserves discussion.

When we conduct counterfactual analysis using the �rst-step policy function estimates, which are

reduced-form in nature, it is very natural to worry about the Lucas critique. However, given the panel

structure of our data, our setup is not subject to this critique so long as two requirements are met. First,

for each counterfactual, the forward-simulated distribution of state variables must remain within the

empirical support of the policy function. Note that in our panel data, we have much contemporaneous

variation in home prices, credit quality, net equity levels, and so on. Our reduced-form policy function is

a valid description of equilibrium behavior for any realization of state variables in the empirical support.

Therefore, we can use the reduced-form policy function to determine how aggregate outcomes would

change so long as the counterfactual assumption does not lead to simulated values of state variables lying

outside the empirical support. For example, we could predict the trajectory of the aggregate default rate

for the counterfactual scenario in which all housing markets experience the same evolution of home prices

as a particular MSA observed in the data. More generally, we can study any counterfactual that only

involves scenarios that actually occurred for some subset of borrowers in the data. A second requirement

is that the transitions of the state variables must be unchanged under the counterfactuals, because the

�rst-step reduced-form policy function estimates are implicitly conditioned on the transition functions. If

our counterfactuals involve changes in the transition functions of the state variables, the �rst-step policy

function estimates would no longer be valid. We judiciously choose counterfactual exercises that meet

these requirements and conduct them using the �rst approach.

For the set of scenarios considered using the �rst approach, we also compute the counterfactual

outcomes using the second approach in order to compare predictions of these two di¤erent approaches.

The comparison will allow us to show that counterfactuals based on the �rst-step estimates are indeed

valid under certain conditions. We also use the second approach for the counterfactuals that cannot be
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performed using the �rst approach. In particular, we explore the e¤ect that a key government program

called Home A¤ordable Modi�cation Program would have had on borrower behavior if the program had

been introduced during our sample period. This one requires re-simulation of borrowers�optimal behavior

using the structural estimates, because the modi�cations prescribed by HAMP often result in mortgages

with longer maturities (up to 40 years) and lower interest rates (as low as 2 percent) than those seen in

our sample.

Throughout our simulation exercises, we maintain a couple of key assumptions. First, we assume that

the evolution of the macro state variables follows an exogenous process. This partial equilibrium approach

makes the problem more tractable. A general equilibrium model where home prices and interest rates

are endogenously determined is beyond the scope of this paper. In particular, such a general approach

would require modeling how default decisions would feed into the determination of home prices, which is

not an easy task.

Furthermore, our model addresses default decisions of borrowers conditional on their having already

obtained a mortgage. As such, our model cannot be used to predict how loan originations would change

under the counterfactuals. All simulation exercises in this paper implicitly assume that mortgage origina-

tions remain una¤ected by the proposed changes, and solely focus on the default behavior of loans that

have been originated.

6.1 Counterfactuals using the First-Step Policy Function Estimates

We perform the following set of simulation exercises using the �rst-step policy function estimates. Some

of them are intended to shed light on the relative importance of the major factors that contributed to

higher default rates in recent years. Others are intended to assess the impact of various foreclosure

mitigation policies.

We know that the subprime mortgage crisis of 2007 was partly characterized by an unusually large

fraction of subprime mortgages originated in 2006 becoming delinquent or going into foreclosure only

months later. For instance, the cumulative empirical probability of default by the end of 2007 is 10.81%

for mortgages originated in 2006, compared to 6.48% for mortgages originated in 2004, even though the

older loans have had more time over which to default. The �rst set of simulations focuses on explaining

this di¤erence in performance between older and newer loans:

1. It is well known that falling home prices played a key role in the recent increase in defaults. To

quantify its importance, we ask what the aggregate default rate among subprime borrowers would

17



have been under alternative evolutionary paths for home prices. Speci�cally, we ask how all loans

in the data that were alive as of January 2004 would have fared up through the censoring date

(December 2009) if in that year homes in all markets had experienced the same precipitous decline

in value as the average Las Vegas house three years later in 2007 (Scenario 1). By comparing the

predicted default rates given actual home price changes to predicted default rates under the coun-

terfactual scenario, we can determine how home price declines a¤ect borrowers�default behavior.

Another exercise simulates the default behavior of all subprime loans that were alive as of January

2006 under the counterfactual scenario in which all homes nationwide experience an increase in

value in the year 2006 equalling that experienced by the average Las Vegas house two years earlier,

in 2004 (Scenario 2). This exercise tells us how the mortgage market would have performed in

2007-2009 if the housing bubble of the earlier years had continued.

2. In our earlier work (Bajari, Chu and Park, 2011), we found that deterioration over time in the credit

quality of subprime borrowers was another major factor behind the recent increase in subprime

defaults. To investigate this issue, we examine how much lower aggregate default rates would be

if the borrowers who took out loans in the later years had the same overall credit quality as the

borrowers from the earlier years. Speci�cally, we shift the distribution of FICO scores for new

borrowers in 2006 upward to match the mean of FICO scores among borrowers in 2004. We then

simulate out default decisions for the new loans in 2006 until the censoring date of December 2009.

(Scenario 3).

The second set of simulations are intended to evaluate the e¤ects of foreclosure mitigation policies:

1. How e¤ective would mortgage principal write-downs be? Scenario 4 considers the e¤ect of a 10%

principal write-down on all outstanding loans; Scenario 5 considers a 20% write-down.

2. Another policy we consider is a cap on the loan-to-value ratio. It is widely believed that loosened

underwriting standards, such as the relaxation of downpayment requirements, paved the way for the

mortgage crisis. Scenario 6 considers what would happen if LTVs at origination were capped at 0.8

(20% downpayment) for all borrowers whose actual LTVs at origination exceeded 0.8; Scenario 7

caps the original LTV at 0.9 (10% downpayment). Such a stricter requirement reduces the chance of

borrowers going underwater even if home prices decline, thereby reducing the incentive to default.

In Table 6, we report simulation results for the counterfactual cases, which we show alongside the

baseline model predictions for comparison. The results for Scenarios 1 and 2 indicate that more housing

price appreciation causes a substantial reduction in default. Our model explains this e¤ect in part
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by giving borrowers more net equity at each future point in time, relative to the baseline case. As

well, autocorrelation over time in housing prices implies that higher current appreciation leads to higher

expectations for future appreciation. The reverse is true when we subject borrowers to a large price

decline: borrowers are much more likely to default because the price decline pushes some borrowers deep

into negative net equity, reducing the loss from walking away from the loan, and also creates expectations

of future price declines.

[Table 6 about here]

Increasing the overall credit quality of the borrower pool signi�cantly reduces the aggregate default

probability. This suggests that loosened underwriting standards, which permitted consumers with low

credit quality to obtain mortgages, was a signi�cant contributor to the higher default rates among sub-

prime mortgages in recent years. Principal write-downs have the intended e¤ect of reducing default. LTV

caps also have the same qualitative e¤ect, but have a much smaller impact than principal write-downs.

This di¤erence in magnitude is primarily driven by the fact that the LTV caps are binding only for a

small fraction of borrowers, whereas the principal write-downs are applied to the entire population.

6.2 Counterfactuals using the Structural Estimates

In this subsection, we compare the simulation results generated using the �rst-stage estimates with out-

comes obtained through the more typical approach of using structural estimates. In addition, we explore

an additional counterfactual scenario that studies the e¤ects of one of the key government interventions

in primary mortgage markets following the subprime crisis. In an e¤ort to stem the tide of defaults,

the government introduced the Home A¤ordable Modi�cation Program in 2009.11 The objectives of the

program were twofold: to create a process to help lenders identify at-risk loans that could pro�tably be

modi�ed in a way that reduced the borrower�s total monthly payment to no more than 31 percent of

gross income; and to subsidize such modi�cations. As of the �rst quarter of 2011, 1.5 million loans have

been modi�ed under HAMP on a trial basis, with 670,000 of these modi�cations made permanent.12 We

explore the e¤ect that the HAMP program would have had on borrower behavior under the hypothetical

scenario in which the program had been introduced sooner and made available to borrowers during our

11There have been two other major government interventions in the primary mortgage market. The very unsuccessful
�Hope for Homeowners�program, introduced in 2008, allows delinquent borrowers to re�nance into government-guaranteed
loans if the lender agrees to forgive part of the principal balance. Very few lenders have participated in the program due to
their reluctance to write down principal. The Home A¤ordable Re�nance Program (HARP), created at the same time as
HAMP, streamlines re�nancing for borrowers whose loans are in government-sponsored entity (GSE) mortgage pools and
who are current on their mortgages and meet certain other qualifying criteria. The qualifying requirements, including the
restriction to GSE mortgages, exclude most if not all of the mortgages in our sample.
12Holden et al. (2011).
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sample period.

We �rst identify the set of loans that, but for the timing of the HAMP program, could have quali�ed

for a modi�cation. To qualify for HAMP, a loan must be a �rst lien originated before 2009, backed by an

owner-occupied property, and have an unpaid balance of at most $729,750. The program also requires

that the borrower must be under demonstrable �nancial hardship, but because we do not observe each

borrower�s current income, we ignore this requirement.

Then, for the set of qualifying mortgages, we simulate the borrowers�behavior over time assuming that

their monthly payments are lowered at some point between January 2006 and the end of the sample period.

The HAMP rules contain a large number of contingencies and conditions� including a probationary six-

month �trial period�for borrowers of modi�ed loans� but we only take into account the main provisions

of the program. In particular, HAMP spells out that monthly payments be reduced through the following

�waterfall�:

� First, the lender reduces the monthly payment, pi;t, to 38 percent of the borrower�s gross income,

yi;t, through any chosen means (including interest rate reductions, extending the loan duration,

forbearing on principal, or writing down principal).

� Next, pi;t is further reduced to 31 percent of gross income through the following sequence of steps:

�The interest rate is reduced to a minimum of 2 percent.13

� If pi;t=yi;t is still greater than 0:31, then the loan duration, T , is extended out to a maximum

of 40 years.

� If pi;t=yi;t is still greater than 0:31, then the lender forbears on however much principal is

required to bring pi;t=yi;t down to 0.31. The forborne principal is due with zero interest at

either loan maturity or whenever the loan is prepaid.

To make our scenario more concrete, we assume that the initial reduction of pi;t=yi;t down to 38 percent

is made through the same sequence of steps as required for reducing pi;t=yi;t from 38 to 31 percent.

In addition to specifying the terms of the loan modi�cation, the HAMP program also contributes

$1000 yearly, for up to �ve years, toward the principal repayment of borrowers of modi�ed loans who

continue to pay on time. We incorporate this subsidy by reducing monthly payments to the borrower by

$83 per month for the �rst 5 years after modi�cation.

13The rate was �xed for �ve years and allowed to rise thereafter, subject to a maximum rate of increase. Because we limit
our attention to hypothetical modi�cations made in or after January 2006, we ignore the possibility of future rate increases.
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Next, by averaging over simulation draws of each consumer�s behavior, we compute the lender�s

expected net present value (NPV) of making a loan modi�cation in each time period.14 In addition to

the parameter estimates, the expected NPV also depends upon the lender�s discount rate, the severity of

losses on loans that default, and the value of various government subsidies made directly to the lender.15

We set the lender�s discount rate equal to the prevailing Freddie Mac Primary Mortgage Market Survey

(PMMS) rate for 30-year mortgages. For loss severities, we assume that when a loan defaults, the lender

forecloses on the loan and immediately recovers an MSA-speci�c percentage of the current market value

of the loan, minus a �xed cost of $10,000.16 Finally, the lenders enjoy two direct subsidies: (1) The

government compensates the lender for 50 percent of the reduction in monthly payments from 38 percent

to 31 percent; (2) Lenders receive a lumpsum payment of $1000 for modifying a loan that is already

delinquent or $1500 for modifying a still-current loan.

Finally, we compute the distribution of NPV changes implied by loan modi�cation over our estimation

sample, after rejecting modi�cations of loans that it never makes sense for the lender to modify. We

assume that for loans that can be pro�tably modi�ed, the modi�cation occurs in the �rst period in which

the NPV implied by the modi�cation is greater than the NPV of the unmodi�ed loan.17 Additionally,

we compute the aggregate change in default and prepayment behavior implied by all pro�table loan

modi�cations.

7 Conclusion

We have estimated and simulated a dynamic structural model of mortgage default. Using our model,

we have quanti�ed the importance of home price declines as well as looser underwriting standards in

creating the conditions that led to the recent wave of mortgage defaults. We have also used the model to

investigate the impact of various mortgage policies that have been proposed or implemented by regulators

in response to the mortgage crisis.

In addition to answering these timely economic questions, our paper makes a few methodological

contributions. First, we propose a new estimation method that is intuitive and easy to implement.

Second, we prove that we can identify the discount factor by exploiting the features of the empirical

14We assume that a loan can only be modi�ed once.
15By making default less likely, the $1000 annual contribution toward the borrower�s principal repayment constituted an

indirect subsidy to lenders.
16 In reality, a small percentage of loans that become delinquent do eventually cure. However, because we treat default as

a terminal event, we abstract from this possibility, and instead choose a conservative speci�cation of the loss given default.
17The program actually required that loans pass an NPV test o¢ cially designed by the government in order qualify for a

HAMP modi�cation. The o¢ cial NPV test, described at http://www.hmpadmin.com, is of course di¤erent from the NPV
test that we perform based on our own model estimates. According to Holden et al. (2011), the vast majority of loans
submitted for eligibility review for a HAMP modi�cation passed the o¢ cial NPV test.
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setup. Finally, we show that it is possible to conduct counterfactual analyses via simulations based on

the �rst-step policy function estimates. This approach allows us to avoid having to re-solve the dynamic

programming problem for more than half a million borrowers, making the counterfactuals much more

computationally feasible. The same idea could be usefully applied to other empirical problems where the

structure of data makes certain counterfactual analyses immune to the Lucas critique.
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Table 1: State Variables in First-Step Policy Function Estimation

State Variable Note

Low Doc = 1 if the loan was done with no or low documentation, = 0 otherwise.

Fixed over time.

Multiple Liens = 1 if the borrower has other, junior mortgages, = 0 otherwise.

Fixed over time.

FICO FICO score, a credit score developed by Fair Issac & Co.

Scores range between 300 and 850, with higher scores indicating

higher credit quality. 5 splines of FICO are used in estimation.

Fixed over time.

Income Monthly income reported at origination. 3 splines are used.

Fixed over time.

Interest Rate Contractual interest rate. 3 splines are used in estimation.

Fixed over time.

Market Rate Market interest rate. 3 splines are used in estimation. Lagged

value of market rate is also included since it a¤ects state transition.

V Current home value. 3 splines are used in estimation.

Lagged value of V is also included.

Net Equity Current home value - outstanding loan balance. 3 splines are used.

Payment Monthly payment. 3 splines are used. Fixed over time.

Unemployment Rate Monthly unemployment rate at the county level. 3 splines are used.

Lagged value of unemployment rate is also included.

Original LTV Loan to value ratio at origination. 3 splines are used.

Tt Months remaining until maturity. 5 splines of Tt are used in estimation.

MSA dummies

We include in estimation interactions between each of the above state variables and

5 splines of Tt, as well as interactions among the state variables (other than Tt).

25



Table 2: Within-Sample Fit of First-Step Estimates

Default Probability Prepay Probability Pay Probability

Prediction Data Prediction Data Prediction Data

All 0.490% 0.490% 1.870% 1.870% 97.639% 97.639%

FICO G1 0.933% 1.021% 2.2% 2.228% 96.867% 96.751%

FICO G2 0.851% 0.806% 2.129% 2.09% 97.02% 97.100%

FICO G3 0.702% 0.683% 2.053% 2.012% 97.246% 97.305%

FICO G4 0.301% 0.29% 2.036% 2.074% 97.663% 97.636%

FICO G5 0.111% 0.151% 1.193% 1.253% 98.695% 98.596%

FICO G6 0.032% 0.023% 1.328% 1.27% 98.64% 98.707%

Orig LTV G1 0.288% 0.28% 1.574% 1.401% 98.138% 98.319%

Orig LTV G2 0.265% 0.261% 1.727% 1.751% 98.009% 97.988%

Orig LTV G3 0.451% 0.434% 1.842% 1.950% 97.707% 97.615%

Orig LTV G4 0.498% 0.546% 1.779% 1.73% 97.723% 97.725%

Orig LTV G5 0.682% 0.691% 2.257% 2.356% 97.062% 96.954%

Orig LTV G6 0.783% 0.728% 2.143% 2.049% 97.074% 97.222%

Low Doc = 0 0.464% 0.464% 1.948% 1.948% 97.588% 97.588%

Low Doc = 1 0.537% 0.537% 1.733% 1.733% 97.73% 97.73%

Multi Lien = 0 0.463% 0.463% 1.944% 1.944% 97.593% 97.593%

Multi Lien = 1 0.821% 0.821% 0.973% 0.973% 98.207% 98.207%

Net Equity G1 1.566% 1.526% 0.368% 0.231% 98.066% 98.243%

Net Equity G2 0.657% 0.632% 1.161% 1.295% 98.182% 98.073%

Net Equity G3 0.511% 0.555% 1.858% 1.887% 97.631% 97.558%

Net Equity G4 0.286% 0.277% 2.411% 2.331% 97.303% 97.392%

Net Equity G5 0.176% 0.185% 2.683% 2.667% 97.141% 97.148%

Net Equity G6 0.094% 0.069% 1.899% 1.988% 98.008% 97.943%

This table examines probability of default/prepay/pay in each period.

G1: bottom 10% in the speci�ed variable; G2: 10%-25%; G3: 25%-50%;

G4: 50%-75%; G5: 75%-90%; G6: top 10% in the speci�ed variable
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Table 3: Out�of-Sample Fit of First-Step Estimates

Default Probability Prepay Probability Pay Probability

Prediction Data Prediction Data Prediction Data

All 0.523% 0.471% 1.951% 1.818% 97.526% 97.711%

FICO G1 1.018% 0.871% 2.571% 1.926% 96.411% 97.203%

FICO G2 0.927% 0.775% 2.158% 1.952% 96.916% 97.273%

FICO G3 0.724% 0.685% 2.054% 2.075% 97.223% 97.24%

FICO G4 0.325% 0.259% 2.069% 2.075% 97.605% 97.665%

FICO G5 0.121% 0.18% 1.276% 1.26% 98.603% 98.560%

FICO G6 0.024% 0.047% 1.503% 1.078% 98.473% 98.875%

Orig LTV G1 0.473% 0.093% 1.931% 1.249% 97.596% 98.659%

Orig LTV G2 0.222% 0.308% 1.756% 1.631% 98.022% 98.061%

Orig LTV G3 0.437% 0.512% 1.784% 1.994% 97.78% 97.494%

Orig LTV G4 0.512% 0.483% 1.818% 1.746% 97.670% 97.771%

Orig LTV G5 0.742% 0.698% 2.42% 2.094% 96.838% 97.207%

Orig LTV G6 0.885% 0.639% 2.345% 2.017% 96.77% 97.344%

Low Doc = 0 0.525% 0.441% 2.082% 1.850% 97.392% 97.709%

Low Doc = 1 0.518% 0.523% 1.72% 1.761% 97.762% 97.716%

Multi Lien = 0 0.484% 0.449% 2.056% 1.861% 97.459% 97.69%

Multi Lien = 1 0.994% 0.736% 0.66% 1.288% 98.347% 97.975%

Net Equity G1 1.562% 1.588% 0.354% 0.227% 98.084% 98.185%

Net Equity G2 0.747% 0.559% 1.202% 1.273% 98.052% 98.168%

Net Equity G3 0.563% 0.486% 1.895% 1.814% 97.542% 97.7%

Net Equity G4 0.31% 0.273% 2.618% 2.184% 97.072% 97.543%

Net Equity G5 0.137% 0.215% 2.97% 2.492% 96.893% 97.292%

Net Equity G6 0.149% 0.046% 1.607% 2.32% 98.244% 97.633%

This table examines probability of default/prepay/pay in each period.

G1: bottom 10% in the speci�ed variable; G2: 10%-25%; G3: 25%-50%;

G4: 50%-75%; G5: 75%-90%; G6: top 10% in the speci�ed variable
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Table 4: Simulated Probability of Eventual Default or Prepay by End of 2009

Prob. Default Duration to Default Prob. Prepay Duration to Prepay

All Prediction 15.949% 35.92 59.454% 27.39

Data 14.877% 30.26 56.772% 24.20

FICO G1 Prediction 27.796% 26.74 60.012% 31.29

Data 26.347% 27.09 57.485% 23.28

FICO G2 Prediction 20.911% 26.95 58.403% 26.76

Data 20.968% 23.67 54.435% 23.83

FICO G3 Prediction 18.191% 30.45 58.958% 26.24

Data 19.372% 33.20 57.068% 24.95

FICO G4 Prediction 10.828% 41.15 63.113% 26.52

Data 8.732% 32.52 62.535% 23.22

FICO G5 Prediction 8.741% 52.13 56.446% 28.46

Data 6.024% 45.4 50% 24.73

FICO G6 Prediction 6.122% 59.72 55.318% 28.13

Data 0.935% 73 51.402% 26.95

Net Equity G1 Prediction 28.922% 30.71 50.578% 29.22

Data 32.813% 25.19 42.188% 26.15

Net Equity G2 Prediction 22.074% 32.40 58.416% 31.17

Data 20.270% 31.82 54.73% 28.4

Net Equity G3 Prediction 16.623% 35.7 61.935% 27.81

Data 16.204% 30.36 57.407% 24

Net Equity G4 Prediction 12.622% 37.32 61.902% 24.53

Data 11.587% 30.54 60.202% 21.56

Net Equity G5 Prediction 8.862% 39.51 59.108% 24.96

Data 7.186% 32 61.078% 23.75

Net Equity G6 Prediction 9.710% 45.54 43.362% 29.22

Data 4.348% 21 44.928% 24.06

This table examines probability of eventual default/prepay by the end of 2009. Duration is measured in months.

G1: bottom 10% in the speci�ed variable; G2: 10%-25%; G3: 25%-50%;

G4: 50%-75%; G5: 75%-90%; G6: top 10% in the speci�ed variable
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Table 5: Structural Estimates

Period Payo¤ of Prepay Period Payo¤ of Pay

V 0.148 (0.051) *** 0.38 (0.033) ***

Payment -0.025 (0.009) *** -0.025 (0.009) ***

Income -0.035 (0.002) *** 0.012 (0.0008) ***

FICO -0.157 (0.011) *** 0.119 (0.006) ***

Unemployment Rate -0.331 (0.004) *** -0.023 (0.002) ***

Low Doc -0.15 (0.015) *** -0.068 (0.007) ***

Multiple Liens -0.585 (0.027) *** -0.179 (0.013) ***

Original LTV 0.345 (0.059) *** -0.419 (0.032) ***

� (coe¤ on Ê [Vt+1(si;t+1)jsi;t; ai;t]) 0.936 (0.002) *** 0.936 (0.002) ***

MSA dummies Included Included

No. of Obs 43180 43180

R2 0.8850 0.9725

SUR with constraints that coe¢ cients on payment and Ê [Vt+1(si;t+1)jsi;t; ai;t]

are the same between the two equations.
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Table 6: Counterfactuals using First-Step Policy Function Estimates

Scenario Counterfactual Baseline

Default Prepay Default Prepay

Scenario 1: Home Price Decline 15.9% 48.27% 14.11% 51.82%

Scenario 2: Home Price Increase 13.68% 52.36% 18.56% 39.53%

Scenario 3: Higher Credit Quality 15.79% 18.56% 37.69% 18.36%

Scenario 4: 10% Principal Write-Down 12.99% 65.42% 15.95% 59.45%

Scenario 5: 20% Principal Write-Down 10.48% 70.69% 15.95% 59.45%

Scenario 6: LTV Cap at 0.8 15.46% 59.9% 15.95% 59.45%

Scenario 7: LTV Cap at 0.9 15.9% 59.44% 15.95% 59.45%

This table examines probability of eventual default/prepay by the end of 2009.

The �rst (second) column reports predicted probability of eventual default or prepay

by December 2009 under the speci�ed counterfactual (baseline) scenario.
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