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Introduction
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Motivation

» Recent interest in “fat tails” in distribution over temperatures
» one motivation: survey of published scientific work (Weitzman)
» subjective appraisals of key parameters, unclear these are independent
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Introduction
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Motivation

» Recent interest in “fat tails” in distribution over temperatures
» one motivation: survey of published scientific work (Weitzman)
» subjective appraisals of key parameters, unclear these are independent

» can we say something using current climate data?
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Motivation

Current economic literature typically assumes:

» damages based on carbon stock not temperature

» exponential decay of carbon stock (linear uptake)

» stylized [quadratic] representation of link between climate and damages
» deterministic or simple stochastic representation
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Motivation

Current economic literature typically assumes:

» damages based on carbon stock not temperature

» exponential decay of carbon stock (linear uptake)

» stylized [quadratic] representation of link between climate and damages
» deterministic or simple stochastic representation

each of these assumptions is suspect
Combined, these assumptions imply downward bias in social cost of carbon

» relating damages to carbon stocks only sensible if direct relation
» climate scientists recently observed some carbon (= 20%) stays in
atmosphere virtually indefinitely = concave (non linear) uptake
» quadratic damages = focus on mean & variance
> higher-order moments not relevant
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carbon stock vs. temperature

» temperature changes linked to carbon stock
» carbon stock changes linked to emissions
» suggests 2" order relation between temperature and accumulated

emissions
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carbon stock dynamics

relating damages to carbon stocks only sensible if direct relation

Physicists typically assume “three box model”
3 state variables, related to different time frames

> Cj reflects ‘long term equilibrium ’ stock
> Co reflects medium term variations around Cs
> Cy represents shorter term variations

importantly, gases depreciate from C3 so slowly as to be negligible
implies some carbon (=~ 20%) stays in atmosphere virtually indefinitely
temperature changes linked to carbon stock

carbon stock changes linked to emissions

suggests 2" order relation between temperature and accumulated
emissions
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Three box model

Co = ayE—bCo
Cs = bsCs

» concave relation in C... approximate with quadratic decay?
» analogous to the logistic growth component in modern fisheries models

C:a1E—U(C) :a1E—C(bo—b1C)
» U(C) is “uptake”
» interpretation of coefficient on C?: “carrying capacity”
» maximum ability of sinks to uptake carbon

> oceans
> forest stocks
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Linear marginal damage?
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stochastic temperatures?
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Deterministic version of model
®00

Control model

» PDV of payoffs at time t = [n(E) — D(T)]e *,
> T: net benefits from unabated emissions [GDP net of seq’n, abatem’t costs]
> D: temperature-related damages
> p: discount rate

» 7' (E) >0 forsmall E,n"(E) <0

> iso-elastic form 7t(E) = AE®+ has received significant attention

T'(E)
En"(E)

» define Current-value Hamiltonian
H = n(E) — D(T) +ulai E — C(bo — b1 C)] + v[oin(& ) — BT]

> elasticity 6 =

> uis co-state variable (shadow value) associated with state variable C
> V is co-state variable (shadow value) associated with state variable T
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Deterministic version of model
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Maximum principle

Necessary conditions for solution:

0 = 7W(E")+au
uo= P,U—aH/aC:(P+bo)/~l—2b1cﬂ—%v
= pv—0H/dT = (p+B)v+D'(T)
Time-differentiate equation first condition to obtain

0=n"(E*)E* + ayjt = "(E*)E* + a1 [(p + bo)u — 2b1 Cu — 2], or
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Deterministic version of model
(o] 1]

Maximum principle

Necessary conditions for solution:

0 = wW(E")+au
. (04
= pu—0H/IC = (p+bo)u—2b1Cu— =V
= pv—0oH/dT = (p+B)v+D(T)
Time-differentiate equation first condition to obtain
0=n"(E*)E* + ayjt = "(E*)E* + a1 [(p + bo)u — 2b1 Cu — 2], or

= (p + bO - 2b1 C) :Ctl,/((g*)) n//(aé?) V<
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Deterministic version of model
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Simpler model

Consider ‘conventional’ assumption T(t) = ¢(C(t))

» damages are then d(C) = D(¢(C))

» state equation on T becomes irrelevant to the dynamic optimization
problem

» optimality condition for E is as above
» equation of motion for the (lone remaining) co-state variable is
f1=(p+bo)u—2bCu+d'(C)
» differential equation governing the path of optimal emissions becomes
E ai
—=U(C)0— — —
(C) En'(E)

d(c
= (c)
» replace the component ¢ with o'(C), E* with E
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Empirical Evidence
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» Temperature: monthly global mean temperature, Centigrade
» Carbon stocks: monthly readings at Mauna Loa, ppm
» March 1958 - August 2011

» Global emissions: annual observations, 1958 - 2007

> ‘conventional’ emissions
> emissions related to land use change

» data sources: NOAA, CDIAC, EIA
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Empirical Evidence
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Stochastic temperatures, cont.

» now represent temperature state equation as stochastic
» how to model? GBM? jump process?
> regress In(Ci_1), T_1on T; — T4 (= AT)

> alternative 1: if C drives T then AC drives AT

>> alternative 2: perhaps outliers

> alternative 3: endogeneity in carbon?

variable Regression 1 Regression 2 Regression 3 Regression 4 Regression 5
T -.1634* -.1639%* -.0403** - 1587 - 1647
(.0217) (.0219) (.0114) (.0196) (.0223)
In(C;) 5167** 5167 — .5058** 5361
(.0787) (.0789) — (.0711) (.0834)
C—Ciy — .0029 .0308* — —
— (.0167) (.0135) — —
Douro — — — -.0957** —
— — — (.0019) —
Dot — — — 1075 —
— — (.0019) —
constant -.9647** -.9560 7767 9699** -1.0943**
(.3368) (.3394) (.2198) (.3038) (.3604)
R-squared .082 .082 .020 256 .082

Dependent variable: 7; — 7;
number of observations = 640
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Empirical Evidence
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Normally distributed residuals?

Distribution of Climate Residuals errT_ts 1433942 9.77e-11 1433942
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Inverse Normal
Grid lines are 5, 10, 25, 50, 75, 90, and 95 percentiles

» kurtosis = 4.285
» probability this does not differ from 3 (Normal) < .01
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Empirical Evidence
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» allow for probability of jump = A
» distribution of jump sizes
» mean 0, variance &
» means and variance of residuals when no jump obtains: u, 62
» similar qualitative results to kurtosis test
coefficient estimate std. err. restricted estimate restricted std.err.
u -.1209 .043 -.0001 .040
G 4196** .049 .9206** .026
A .5816 .069 — —
0 .2076* .089 — —
3 1.0661** 060 — —
Chi-squared test statistic = 54.87
p-value < .0001
*: significant at 5% level
*#: significant at 1% level
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Empirical Evidence
000000

Carbon Decay

» annual data on forest stocks 1990-2008
» use land use data to predict forest stocks going back to 1958

> use this synthetic data to create a proxy D for deforestation
> D represented relative to 1958 (% of land deforested)

» use changes in CO2 stock, total emissions to construct variable
representing ‘uptake’
> regress uptake on C, C? and perhaps interactions with forest stocks
> Hy : coefficients on C? are statistically unimportant
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Empirical Evidence
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Uptake results

Regression results: carbon uptake analysis

variable coefficient std. err.  t-stat
C 1.2460 .4369 2.85
c? -.00851 .00370 2.30
FC -1.0483 .4953 2.12
FC? .00314 .00146 2.16
constant 536.95 290.24 1.85
R? = .803

Durbin-Watson stat = 1.909
F-stat on Hy: 5.465 (1% critical value = 5.149)
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Implications
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Theoretical considerations

DP approach: solve for V(C,T) using Fundamental eq’n of optimality

Deterministic modeling approach:

oV . dV
max,, {nte_” +C% +Ta7} = pV

Stochastic variant:

dV 1 aV
—rt _ _ _ _
max,, {nte —|—CaC + th[dT} BT} =pV.
Expand Ito operator:
#E[dT] = an(C/C)—BT + x(u,06°A1,6,9)
N S~

deterministic ingredients ~ stochastic ingredients
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Implications
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Concluding thoughts

» Important to shift focus from carbon stock to temperature
> leads to more complicated, subtler, effects
» some evidence of relatively fat tails in residuals associated with
temperature changes
> suggests fatter-tailed distribution than Brownian motion
> possible role for unanticipated rapid changes (jumps)
» evidence of non-linear decay in carbon stocks

> important in both ocean and forest sinks
>> forest sinks absorb less rapidly, non-linear effect enters less rapidly
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