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ABSTRACT. This paper studies a class of information aggregation isadeich we call “aggrega-
tion games.” It departs from the related literature in twammaspects: information is aggregated by
averaging rather than majority rule, and each player sefemtn a continuum of reports rather than
making a binary choice. The game models in a stylized way pleeation of a class of aggregating
institutions that play an increasing role in modern ecoremni leading example is the process by
which LIBOR rates are determined. Each of a finite collectbplayers receives a private signal,
then submits a report to the center, who then makes a detia&ged on the average of these reports.
The essence of an aggregation game is that heterogenegassgagage in a “tug-of-war,” as they
attempt to manipulate the center’s decision process byepisrting their private information. When
players have distinct biases, almost all of them rationaligggerate the extent of these biases. The
paper focuses primarily on games with a small number of ptaye identify a class of “anchored”
games with quadratic payoffs for which sharp comparatiaéicst results can be obtained. These
results relate to the impacts of changing the number of ptayke degree of player heterogeneity
and the space of admissible announcements. We also shoasttta number of players increases
without bound, the relationship between players’ signatsthe outcome becomes more and more
tenuous, precisely as the relationship between theselsignd the true state becomes more and
more clearcut.
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1. INTRODUCTION
We model a class of games that are naturally describadg®gation gamesThere is a finite col-
lection of players. Each player is characterized by two patars: the first is a privately observed
signal, identified with the playertype the second is an observable characteristic, such as avotin
record, profession, income or location. Players’ typescarginuously distributed on a compact
interval; the distribution of types is common knowledgeay®rs simultaneously observe their sig-
nals, then submit reports to a central authority, who makeéscasion which affects all of them.
Reports are rejected unless they lie in a prespecified canmtacval. The authority’s decision
rule is fixed and commonly known. The defining property of agragation game is that two of its
key components—the center’s decision and players’ @#iti-depend on players’ realized types
only through the mean of these realizations. More formallglayer’s strategy in an aggregation
game is to make a report based on his type. The center mapstreohthese reports, paired with
the vector of observable characteristics, to some inteBeth player’s utility depends on his own

observable characteristic, the center’s decision and tarof players’ privately observed signals.

Our model has at least two alternative interpretations.fiFbeis Bayesian: the center treats play-
ers’ type reports as a sample of signals drawn from a digtabuvhose unknown mean is payoff
relevant. Under this interpretation, the distribution Eyer types is the marginal joint distribution
of the sample data. The center’s decision rule depends oméaa of players’ announcements,
which it treats as an estimate of the unknown population m&ach player’s utility depends on
the center’s choice, as well as the (unobservable) meahmbgkrs’ signals, which is a sufficient
statistic for the population mean of the signal distribatidhe third argument of a player’s utility
is his own observable characteristic, which is the indigitusubjective bias relative to the best

available estimate of the truth.

In our second, non-statistical interpretation, the ceatgregates information but does not draw
inferences from it. Again, each player’s type is the rediimaof a random variable, but in this case
each realization is interpreted as the true value of a sicgeponent of some vector. As before,
the center’s decision is based on the mean value of playepsrted types, which is in this case
interpreted as a summary value of a composite assessmentitility that each player associates

to the vector depends on this summary value, but is also aiuioj@liosyncratic bias.
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This paper contributes to an extensive literature on in&drom aggregation that goes back to Con-

dorcet (1785). A common theme of this literature, reviewe®ec. 82, is that individuals send
messages to the center, which are somehow aggregated apedn@pan outcome that affects
everybody. The question is then asked: how well does theeggtjon process work? Specifically,
under what circumstances does the resulting outcome cdeingth the one that would have been
selected by a aggregate-welfare-maximizing decision maké full access to the private infor-

mation on which agents base their messages? The instiftagigregation mechanism which has
been examined most thoroughly is majority rule, especiallthe context of elections. We ex-

amine an alternative mechanism—report averaging. Whieaaing is arguably more significant
in practice than majority rule as a tool for making decisjahe former has received much less

attention from researchers than the latter.

Increasingly many institutions in modern economies userntegveraging to aggregate informa-
tion provided by industry or market participants. This pagtedies the incentives facing an agent
participating in such an institution to misreport her imf@tion, when she has an interest in the
outcome of the aggregation process. For example, if an dgent bias in favor of outcomes
that exceed the one that maximizes aggregate welfare ggentsl aggregate private information,
she then has an incentive to upwardly bias her reports; shahe can be expected to “rationally
exaggerate” her information. Indeed, there have been ywidad concerns about attempts to ma-
nipulate the outcomes of a variety of report-averagingitutgbns. For economists schooled in
mechanism design, a natural response to these concerngasut® on the design of incentive
schemes that would reverse engineer via the revelatioriplinthe mis-reporting process. In
practice, however, mechanistic report-averaging hasgar@xtremely resilient as an aggregating
instrument, in spite of its obvious deficiencies. Indeee, @lggregation institutions we discuss
below are necessarily non-strategic, because the ecoramhoics that utilize their products require
them to be so. In many industries, a single aggregator bexzdneescorekeeper upon which all
users rely. The groundrules upon which these aggregatgisteace is premised require them
to provide their patrons and/or their clients with mechahitransparent service which is passive
rather than strategic. Accordingly, real-world inforneaitiaggregators have responded to concerns
about manipulation of their processes either by elimimgatintlier reports or by attempting to en-

force compliance in various ways, rather than to adopt mophisticated aggregation tools in
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which the center acts strategically. Since report averpgiclearly a robust institution in modern

economies, our focus in this paper is on the implicationsxaiggeration when the center acts

non-strategically.

1.1. Empirical examples of information aggregation by averagimg. Judged by its financial im-
pact, by far the most significant example of information aggtion by averaging is the process
by which LIBOR is determined. MacKenzie (2008) estimates the value of financial contracts
whose interest rates are based on Libor to be approxima3€l§ Sillion. Every weekday, eight
to sixteen leading banks submit estimates to Thomson Reafehe interest rates at which they
could borrow money from other banks for various duratidrReuters discards the lowest and
highest quartiles of the estimates it receives, and dextheaverage of the remaining estimates
to be the daily Libor rate for that currency/duration. Thisthod of determining Libor rates has
been widely criticized as manipulable. In an influential V&&icle, Mollenkamp and Whitehouse
(2008) argued that during the recent financial crisis, s#\mnks were reporting borrowing costs
that were significantly lower than their true costs, in orbeappear more financially sound than
they in fact were. Snider and Youle (2010) provides perseagocumentation of exaggeration,
presenting “suggestive evidence that misreporting ineestare partially driven by member bank
portfolio positions” (p. 3). In spite of extensive calls f@form, the institutional underpinnings of

Libor remain basically unchanged.

Our model can be viewed as a stylized representation of tBORI rate determination process,
although simplified in one important respect. The playe@inmodel are the contributing banks;
the center is Thomson Reuters; the playdylseis a summary statistic for the bank’s private
information about market conditions relating to interesérdetermination; the player’s observable
characteristic is a parameter indicating whether the baslahoias relative to the industry in favor
of a higher or lower interest rate for a particular durati8mce this indicator of bias will typically
depend on public information such as balance sheet coasioiles and portfolio positions, it is
natural to model it as commonly known. Our model simplifies thbor process by assuming

1“Judged by the amount of money directly dependent on it, thiisB Bankers’ Association’s London Interbank
Offered Rate (LIBOR) matters more than any other set of nusibethe world” (MacKenzie, 2008).

2Banks’ reports are responses to the following question: wAat rate could you borrow funds, were you to do so
by asking for and then accepting inter-bank offers in a reable market size just prior to 11 am?” (British Banking
Assoc, n.d.)
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that a contributor’s report will be accepted or rejectechvaértainty, depending on whether or
not it belongs to an exogenously specified interval; by @stirthe €x ant¢ probability that a
particular bank’s actual Libor quote will be accepted is@gehously determined, depending on
the location of theex anteunknown boundaries of the interquartile range. This disitom will be
less significant, the greater is the extent to which bankgoeadtict the location of these boundaries.
In fact, it appears that they can do so with some accuracyde$@ind Youle (2010) find strong
evidence that Libor quotes are “bunched” at the ex-post daues of the inter-quartile range:
moreover, they present evidence that banks with financtantives to raise (lower) Libor rates

submit quotes near the upper (lower) boundaries of thisaang

Many other important indices are computed by averaginggherts provided by interested parties
to a central “scorekeeper.” The Baltic Dry Index (BDI) is sadered to be one of the purest
leading indicators of economic activity (Gross, ntllyis determined by aggregating the responses
by shipping brokers to daily questions about how much it watdst to book various cargoes
of raw materials on various routes. Like Libor, the BDI anchmany financial contracts: for
example, bulk shippers and carriers regularly trade “frefgrward contracts” linked to the BDI,
to hedge against movements in spot freight rates (Leact))2@ince the index is maintained by
and for professionals in the shipping business, brokeexlgidave incentives to manipulate it by
exaggerating their daily responses. In fact, however,ritdex is generally regarded as extremely

reliable (Hansen, n.d.).

By contrast, the natural gas price index computed by Platsgurce of benchmark price assess-
ments for physical energy markets, was famously distoretaiden 2001 and 2005 as a result of
exaggerated reports. The Commodity Futures Trading Coiom{€FTC) levied fines totaling
$350 million in actions against energy suppliers allegitigrapted manipulation of the price of
natural gas. Most of these cases focused on attempted nhatiopuby falsely reporting natu-
ral gas trading information to energy index firms such ast®lakhe affected Platts reports sent
false signals to other market participants that suppliegwignificantly tighter than expected, and
prices rose dramatically as a consequence (USGAO, 20(KIingjc2008). Several Enron exec-

utives were jailed as a result of the CFTC'’s investigati@ms] Platts was obliged to redesign the

3t represents the cost paid by an end customer to have aisgippmpany transport raw materials across seas on
the Baltic Exchange, the global marketplace for brokerhigsing contracts” (Wikinvest, n.d.).
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data acquisition procedure on which its natural gas pridexrwas based, to rely less on industry

reports, and more on verifiable data.

Under the Agricultural Marketing Act of 1946, the USDA's Agultural Marketing Service (AMS)
has been collecting livestock and meat price and relateéeharformation on a voluntary ba-
sis. Again, there is evidence of rational exaggeration lhigrmation providers. Koontz (1999),
comparing voluntary AMS price reports against transactioces from objective sources, found
evidence that voluntary reporting was inefficient duringds when prices were changing appre-
ciably. In particular, the fed cattle price range reportgdUSDA did not increase fast enough
with rising prices, nor decline fast enough with declinirrgces. He concluded that this could be
a result of selective price reporting by both meat packedsfeedlots when markets were moving
against them.

In all of the examples discussed above, the number of ageatEontribute reports is relatively
small. In other instances, the number of report contritaii®much larger. For example, the aver-
age of students’ evaluations of their professors play areasingly important role in academics’
tenure and promotion decisions. Contingent valuationistudggregate the opinions of multi-
ple responders in order to assign values to non-market res®$such as environmental goods,
and to assess the damage due to contamination, oil spdl$Catson, Flores and Meade, 2001).
Increasingly, consumers rely on summary indicators pexvidy online services such as Yelp,
Trip Advisor, Rate My Professor, etc., which aggregateawsgi contributed by multiple patrons of

movies, restaurants, hotels and a host of other goods avideser

1.2. Structure of the paper. The paper is organized as follows. A T sign after the title of a
proposition indicates that its proof is in the appendix. Wpeopositions follow immediately from
arguments in the text, formal proofs are omitted. For caeoress, we will sometimes refer to the
players in our game as “right-wingers” and “left-wingeraid distinguish between moderates and
extremists. Right-wingers want to distort to the right terage signal that the center receives,

and extremists want to distort more than moderates.

Sec. 82 relates our model to the literature. In 83 we intredua model in its most general form
and prove that every aggregation game has a pure strategipeqgo in which players’ strategies

are monotone in their types. This result highlights the faloole in our model played by the
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bounds imposed on acceptable reports. In the absence ofoswetds, unless all players have
ex anteidentical characteristics, right- and left-wingers woeltgage in an endlessly escalating
tug-of-war: the former would distort their signals furtfard further to the right, in order to offset
increasingly magnified leftward distortions by the lat#&icentral result of our paper is that when
players are heterogeneous, all but at most one must be amestiwith positive probability by one
of the boundaries, in order to break this diverging cycleud;lsome degree of information loss is
a necessary condition for equilibriufnSec. §4 demonstrates that incentives to mis-report do not
arise when players hawx anteidentical characteristics. In 85-87, we focus on small ‘tyaéic”
games. The ultimate goal in these sections is to explore hemformation losses due to boundary
constraints depend on fundamental parameters. In orddatéonodeterminate comparative statics
results, we impose further restrictions: we assume thgepsautilities are “biased quadratic loss
functions.® In §5, we develop machinery that will be applied in the corafige statics analysis
in 86 and 87. Every quadratic game has a unique pure stratpghbeium, in which a player’s

unconstrainedtrategy is an affine function of his type.

Quadratic games are particularly tractable when thereespteyer whose affine strategy is never
constrained by the announcement bounds. We call this pthgetanchor” and identify a class
of games called anchored games. In 86, we stuglayer anchored games that are symmetric in
a strong sense: there is a right-wing faction and a precsgtymetric left-wing faction. Several
of the properties of these games are quite striking. Outsppeyoffs and aggregate welfare are
all independent of the bounds on the announcement spacsggd@ddhese bounds contain the type
space and preserve symmetry. To explore in a controlled@nwvient the effect of increasimgwe
clone repeatedly a small set of players until the point attvisiome players are constrained with
probability one, thus generating a finite sequence of irstngdy large games. If the type distribu-
tion is uniform, players’ payoffs initially decline due todreased information losses; eventually,
however, this decline is reversed as the law of large nundsessrts itself and players’ distortions

tend more and more to offset each other. We also investifatertpact of player heterogeneity:

“The role of a compact message space in limiting informatmmsmission has been noted in the literature, in contexts
that differ from ours. See for example, Ottaviani and Sqnn(2006).

SWe use the term “biased quadratic loss function” to denotsa flunctiorL(x,X; b) = —((X+b) —x)2. in which the
target value is the trutkplus a biad. This specification is standard in the costless informatiansmission literature.
See for example Crawford and Sobel (1982) and Morgan an&&iq®008), and the references cited in their fn. 10.
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intuitively, payoffs decline as heterogeneity increasdswever, if initially the two factions are
sufficiently polarized, payoffs will actually increase whee increase the heterogeneity of each
faction holding constant the faction means. 87 studies a quiterdifit class of anchored games,
in which the upper bound on the announcement space is sohagh hever binds in equilibrium.
Games in this class are anchored by the player with the highsgrvable characteristic. In spite
of the obvious structural differences, this class of ganassgnoperties that are remarkably similar
to those of symmetric games. In 88, we examine the propetiear model when the number of
players increases without bound. (The games examined ire§8uach larger than the largest ones
considered in 86.) A recurring theme in the information agation literature is that political insti-
tutions such as elections effectively aggregate privdtenimation when the number of participants
is very large. Based on this literature, one would expedtdimeze players’ signals are i.i.d. around
an unknown population mean, our model with a large numbetayfgos would implement with
probability approaching one an outcome very close to thiarmén fact, however, the outcomes
in our model converges to a constant which is weighted aeechghe lower and upper bounds
on admissible reports; the weight depends only on the ptimooof right-wingers to left-wingers,
and is independent of the population mean. Thus, the raktiip between signals and outcomes
becomes more and more tenuous as the relationship betwgraalssand the true state becomes
more and more clearcut. In the limit, the impact of playegy@gated private information on

outcomes is entirely obliterated. Sec. 89 concludes.

2. RELATED LITERATURE
In assessing the prior literature, it is helpful to classifglong three dimensions. The first dis-

tinguishes between models of majority rule versus avetagiechanisms; the second between
models in which players’ preferences prior to receivingrtpevate signals are homogeneous or
heterogeneous; the third between choice sets contairtimgy évo or a continuum of options. We

discuss a small selection of papers that relate most clos@lyr analysi$.

The related literature focuses primarily on the informagibefficiency of voting under majority
rule. The classical Condorcet Jury Theorem establishedittons under which, when voters

with identical preferences select non-strategicallysfocerely between two alternatives based on

6Piketty (1999), Gerling et al. (2005) and Dewan and She2€16&) all survey the literature quite extensively.
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their private information, and the majority prevails, tresithe number of voters increases with-
out bound, information is in the limit perfectly aggregatadthe sense that the majority’s choice
coincides with the choice that would be taken if all privatéormation were publicly available.
(Feddersen and Pesendorfer (1997) [FP] later call thisgotppfull information equivalence.”)
Austen-Smith and Banks (1996) [AB] study the relationshgiween sincerity and rationality.
Under majority rule, rationality dictates that one shou&tide how to vote conditional on the
presumption that one’s vote is decisive fwvotal). Conditional on being pivotal, one can make
inferences about the distribution of other players’ readisignals and thus about the true state of
the world. Rationality requires that these inferences kertanto account when deciding how to
vote. AB then show that for three very simple specificatiofmding sincerely is, except in very
special circumstances, incompatible with votinfprmatively i.e, in a way that depends nontriv-
ially on one’s private signal. While AB focused on small ga&mEP explores the implications
of pivotality in large ones. FP’s specification of playerséferences is quite similar to ours, ex-
cept that their center chooses between two alternativesrdiog to majority rule’. FP consider

a sequence of games in whiahincreases without bound; when players condition on pigtal
their limit game exhibits full information equivalence. iStproperty is quite robust. For example,
McLennan (1998) considers sequences of games with inaggagi which players have common
preferences; full information equivalence again holdshm limit under very general conditions.
Lohmann (1993) identifies conditions under which the sanopgnty holds when players demon-

strate rather than vote.

As we noted in 81, matters are quite different when the cemterages players’ reports rather
than applies majority rule. A major source of the differercthat pivotality no longer plays any
role, since the leverage that an individual has on the csrdecision is now independent of the
actions taken by other players. Consequently, playersigioomdition their actions on their private
signals, just as they do under Condorcet’s sincere votinge &f very few papers that focuses
exclusively on the averaging mechanism is Morgan and Sto(k@08) [MS]. MS’s constituents,
who have varying degrees of bias, are polled about the stateeavorld. Each one receives a
binary signal about this state, and sends one of two posspltats. The center aggregates these

reports and chooses a policy accordingly. A right-wingeowéceives a left-favoring signal is

A second difference is that our players’ biases are pubkintywn while theirs are private information.
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tempted to mis-report in order to bias the center’s decisothe right. Ifn is small enough,
he will be deterred from doing so by the possibility that hgimtiover-shoot, shifting the policy
to the right of his preferred location. Asincreases, the possibility of overshooting diminishes
along with each individual’s leverage over the ultimateigodecision, so that more and more

constituents vote according to their biases rather thanitifermation.

MS demonstrate that even whans large, full information equivalence can be restored uigio
stratified sampling: by eliminating the responses of thoeatifiable as strongly biased based
on observable criteria, the center in effect limits the az¢he game, restoring the remaining
centrists’ leverage over the outcome, which induces themegpond based on their realized in-
formation rather than their biases, in order to avoid ovensing. MS and our paper are similar
in many respects. In particular, both highlight the negaimpact on information transmission of
the averaging mechanism. The primary difference betweermMSour paper is that their players
make a binary choice while our players receive signals aletiseesponses from a continuum of
options. Overshooting is not a deterrent in our model; oaygis can mis-report to whatever ex-
tent they desire, except when they are constrained by theuagement bounds. More important,
the notion ofrational exaggerationwhich is central to our paper, has no meaning when agents
make binary choices.

Gruner and Kiel (2004) [GK] compare the performance of gameshich the center chooses
either the median or the mean of players’ reported privdtammation. Their median model cor-
responds to majority rule; their mean model correspondsit@eeraging mechanism. In contrast
to the papers discussed above, GK’s players choose fromt@meom of reports rather than make
a binary choice. In contrast to our model, the biases of GKaygrs are proportional to their
private signals; with this non-standard assumption, GKatatain existence without requiring the
announcement space to be compact. GK’s formal results fatlasively on the relationship be-
tween the magnitude of players’ biases and the relativ@peence of the two mechanisms. Their
major conclusion is that the mean mechanism outperformm#uian iff agents’ biases are suffi-
ciently small. Indeed, as in our paper, the mean mechanisim\as the first best when all biases
are zero. While they do not study formally the comparatiaics effects oh, GK do provide
examples showing that with biased players, the performahtiee mean mechanism deteriorates

asnincreases from 3to 7.
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GK'’s examples illustrate nicely some of the themes that argral to this paper. The mean dom-
inates the median when players have common interests etagigormer utilizes all reported
information and agents have no incentive to misreport; mrest, the median mechanism utilizes
only the reported information that the median player presijdo that perfectly good information
is ignored. When players have significant biases, howdwverstrength of the mean mechanism is
also its weakness, which is exacerbated axreases. As noted, an individual’s leverage over the
center’s decision declines with requiring more and more exaggeration in order to accommplis
given shift; in addition, under the mean mechanism, thetikastug-of-war” aspect of exaggera-
tion that we discuss above on pp. $-Both effects diminish the accuracy of reported information
Under the median mechanism, on the other hand, the medigergias one-to-one leverage: she
does not have to engage in a tug-of-war with other playensisioer leverage diluted by. Since
players under this mechanism condition their reports ongpivotal (i.e., on being the median

player), the information they report is much closer to thhtr

Still another framework is presented by Razin (2003), inctan electorate with common prefer-
ences chooses between two candidates. Each voter recgivigate signal that is correlated with

the ideal policy location. The winning candidate treatsrtagnitude of his victory as a guide for

setting policy. Because both candidates have ideologieakl, while the population is ideologi-

cally neutral, the policy that would be selected if all ptevanformation were revealed would be
extreme relative to the electorate’s common bliss poinpddeling on the degree to which candi-
dates are polarized, and the responsiveness of their phlmges to election results, there will be a
conflict between voters’ motivation to select the more appate candidate, conditional on being
pivotal, and their unconditional motivation to correct the winning candidate’s ideological bias.
From our perspective, the primary interest of Razin’s pap#rat it melds into one mechanism the

averaging and majority rule mechanisms that we seek to campa

3. THE MODEL
An aggregation game is an incomplete information simulbasemove game amongplayers,

indexed byr = 1,...,n. For anyx € R" the symbolu(x) will denote the average afs components.

80rtuno-Ortin (1997) examines the incentives to exaggénadenodel of elections with proportional representation.
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Player characteristicsWe assume that each player is characterized bylzservable charac-

teristic and atype Playerr’s typeis 6, € R, which is his private information. We assume
that the6,’s are identically, independently and continuously disited on the compact interval
© = [6,8] C R, with 6 > 8. Let h(-) denote the density, artd(-) the c.d.f., of players’ types.
Let ® = @" denote the space tfpe profileswith generic elemerf). Similarly, let®_, = @"1

be the space of types for players other tlamith generic elemer®_,;. For@®_, € ©_,, let
h_(@_r) = i N(6i). When we integrate w.r.t. either playes type or all other players’ types,
we will use, respectively, the variarlg and9 _, of 6, and@_, to distinguish dummy variables of

integration.

Playerr’s observable characteristic is denotedkpye R and is interpreted ass bias w.r.t. re-
vealed information: a player whose characteristic is pasprefers the center to over-estimate the
mean of players’ types. We refer to the vedtor: (k;)!_; as theobservable characteristic pro-
file. To avoid special cases and/or additional notation:, weosB@dwo restrictions on observable

characteristics: players’ biases cancel each other oteiaggregate and they are distinct.
Assumption Al: (i) Siki=0; (i) i #r = ki #k:.

Restriction (i) yields a clean expression for welfare wifileensures uniqueness. Part (ii) will be

relaxed in 84 as well as §6.1 and §7.1.

The utility function The utility functionis a mappings: T x © x R — R, whereT C R is com-

pact. The scalar first argumentwtan be interpreted as the decision taken by a central atythori
in response to information provided by the playeust,0,k) is the utility to a player with ob-
servable characteristic when the central authority’s decisiontignd the vector of unobservable
characteristics if. The essence of an aggregation game is that a player’s tigmsahis utility

only through its effect on the average of all players’ tyggsecifically, we impose
Assumption A2: u(@) = u@®) = u(1,0,k) = u(t,0 k)

In the formal development below, we will, depending on whisimore convenient, write the

second argument af either as the vectd® or the scalap(0).

Pure strategiesReports are rejected by the center unless they belong tespgcified compact

interval, denoted byA = [a,a]. Given the structure of our model, a player whose uncomsthi
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optimal report exceeda necessarily weakly prefers to have a reporaafccepted than to have
his report rejected. Accordingly, to streamline the expogj we impose as a restriction that each
player must choose a reportAn Formally, we define gure strategyor playerr to be a function
S : © — A, wheres (6;) denotes the announcement of playevhen his type i$9;. (Henceforth,
the symbols, will denote afunctionfrom types toA, while a, will denote a particular value of
s (6r).) The vectors = (sq,...,Sy), called apure strategy profileis thus a mapping fron® to
A = A". A pure strategy () is said to bemonotonef it is nondecreasing and strictly increasing
except wherg () is at the boundary oA. Since the spacg&is bounded both above and belowgif
is monotone, there existdaw threshold typé, € [0, 6] and ahigh threshold typ®, € [0,86] such

thats, equalsa.on [8,6;), is strictly increasing oii@,, 8;) and equals on (6;,6].° Formally,

p

6 ifs(8)>a

Qr<$) = ’ (1a)
sup{e0O:5(0)=a} ifs(B)=a

Bris) =4 e (ab)

inf {cO:5(0)=a} ifs(®)=a

The outcome functiariTheoutcome functiopt : A" x R" — R, maps player announcements and

the vector of observable characteristics to actions by éméral authority. Our center aggregates
information mechanically rather than strategically. ledewe restrict outcome functions to be
complete information socially efficient (CISEyeaning that if players were to truthfully reveal
their types on average, the outcoim&ould maximize social welfare, defined as the average of

players’ individual utilities. That is, defining treocial welfare functiomas
w(T,0,k) = Zu(r,ﬂ,ki)/n, (2)
|

the CISE outcome function i$6, k) = argmaxw(-,0,k). We refer to an outcome implemented by

a CISE outcome function as@GSE outcomelt follows from assumption A2 that CISE outcomes

9Either one of the half-open intervals can be empty. For exanips (-) > a on © then the interval, 6 (s)) is
empty.
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depend on players’ announcements only through their agerag,
H@) = p@E) = tlak) =t@k (3)

Once again, we will write the first argumenttads either am-vector or its average, depending on

convenience. Also, sindeis typically fixed, we will often omit’s second argument.

Player’s expected payoff function$layerr’s expected payoff functionJ,, maps his own an-

nouncement and type into his utility, given other playetsategies. Our expression fak sup-
presses’s observable characteristic and the outcome functionm@dy, given a profiles_;, of

strategies for players other tharplayerr’s expected payoff functiob, : Ax ©@ — R, is
U(a®s) = / u(t((as_r(®_r)),k),(6,9_),k)dh_(9_,). @)

In what follows, the derivativéld%r will play an important role; when confusion can be avoided, w

will abbreviate this expression tdy.

Equilibrium: A monotone pure strategy Nash equilibriYMPE) for an aggregation game is a

monotone strategy profikesuch that for alf, 6 € ©, anda € A, U, (5(0),0;s_;) > U;(a,6;s_).
We make the following additional assumptions throughoetgaper.
Assumption A3: The densityh(-), of players’ types is bounded.

Assumption A4: The utility functionu is bounded and thrice continuously differentiable. For
eachk andu(0), u(-,u(0),Kk) is strictly concave.

Assumption A5: For all (1,(8),k), (i) £ TULLEK > 0, and (i) LULHOK) -

Assumption A6: For allk and®, u(t(-,k),(8),k) is strictly concave inu(a), the average of
players’ announcements.

Some additional assumptions will be introduced later. Vélrena list of assumptions is not ex-

plicitly included in the statement of a proposition beloistmeans that A1-A6 are satisfied.

Assumptions A4 and A5(i), together with the fact th@} is CISE, imply that:

t(-,k) is strictly increasing and continuously differentiableuifa). (5)
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Assumption A6 implies that
U, is strictly concave w.r.t. its first and third arguments (6)

Assumption A3 is required to ensure that pure-strategyliegiai exist. Assumption A5 states that
players with higher unobservable and/or observable chenstics derive higher marginal utility
from an increase in the central authority’s decistBrAssumption A6 is not entirely straightfor-
ward. It states tha% = ‘3;—5’ (%&))24_ %#2;))2 is globally negative. However, sinaeis
not monotone irt, the second term cannot be signed in genEralVe make this assumption to
simplify the analysis. In particular, sin¢#/ = fe,r %%dh_r(ﬁ_r), assumption A6 implies that
for all r, all 8 and alls_;, U, (-,0;s_,) is strictly concave im. Thus, each player has a unique
optimal response to other players’ strategies.
From (5),t is strictly increasing; it follows, therefore, from (4) aAé(i) that

forallr, all a, all®@ and all alls_, % > 0. (7)
Inequality (7) states thaid, satisfies Milgrom-Shannon’s condition SCP-IR(& 6) (see fn. 10).
In our context, this property implies Athey’s sufficiencyndition, SCC, for existence of a pure-
strategy equilibrium, i.e., “the single crossing conditifor games of incomplete information”
(Athey, 2001, Definition 3). Athey’s condition requires thh satisfies SCP-IR only if other play-
ers play non-increasing strategies. Quis satisfy SCP-IR regardless of other players’ choices.
Proposition 1 (Existence of an MPE)! Every aggregation game has a monotone pure-strategy
Nash equilibriums, with the property that for each r; & continuously differentiable o (s), 6, (s)).

The Kuhn-Tucker conditions definings optimal strategy, are, for alld € ©,
a ifU/(aB;s_y)=0andac [aa
0 = {a ifu/(aes)>0 8)
a ifU/(aBsr)<0

10 Assumption A5(i) is a strict version of the “single crossim@perty of incremental returns (SCP-IR)” (Milgrom
and Shannon, 1994) ift; 8) when the utility function is differentiable (Athey, 2001ebnition 1).

LA sufficient condition to ensure Assumption A6 will hold isath(-, k) is linear.
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The essence of an aggregation game is that heterogenegasspdae engaged in a “tug-of-war,”
trying to influence the equilibrium outcome through theinanncements. As soon as one player
who prefers a higher outcome attempts to influence the cégtarcreasing his announcement,
another player who prefers a lower outcome will counter bgreiesing hers. In the absence of
bounds on announcements, this tug-of-war would go on eslgleBhus, a necessary condition for
existence of MPE is that the announcement spglabe compact. The bounds on announcement
space essentially limit how far players can go in mis-rapgrtheir types. We will observe be-
low that players with different observable charactersstice restricted by the bounds to different
degrees, and certain player-types “do particularly wedl'equilibrium. To clarify concepts, we
introduce some definitions. We will say that play&rstrategys () is

(1) nondegenerate (resp. degeneratéhe intervaI(Qr(s(),ér(s()) is non-empty (resp. empty).

(2) isconstrained ab if the announcemers (6) equals eithea or a,

(3) isup-constrainedf 6;(s;) =8 andér(s() <9,

(4) isdown-constrainedf 6(s/) > 6 andér(sr) =0,

(5) issingle-constrainedf it is either up-constrained or down-constrained,

(6) is bi-constrainedf 6, (s;) > 0 and® (s;) < 8.

(7) isalmost-never-constraingti6, (s) =6 and®, () =8,

Degeneratdresp.almost-never-constraingdtrategies pick boundary (resp. interior) pointsfof
with probability 112 An MPE in which each player’s strategy is non-degeneratalis¢an NMPE.

Prop. 1 established that players’ equilibrium strategresnaonotonic in types. We next establish
that strategies are also monotone with respect to playbs&roable characteristics. That isk;if>

Kj but both players are of the same typgannouncement will strictly excega, except when both
announcements are at the same boundama. Moreover, as increases, the gap betweiénand

j’s equilibrium announcements increases until one or batfigk’ strategies become degenerate:
if j’s (resp.i’s) first order condition is satisfied with equality for sonypé andn is large enough,

i (resp.j) will announce the upper bourad(resp. lower bound) with probability one.

Proposition 2 (Monotonicity w.r.t. observable characterstics):' If s be an MPE, then for all
e > 0and for alliand j such thatik-kj > &,

12The distinctions made here relate to the concephfifrmativevoting, which recurs throughout the information
transmission literature. (It appears to have been intredun Austen-Smith and Banks (1996).) Almost-never-
constrained strategies are informative, and degenera&e are uninformative; the remaining types are somewhere
in between.
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strategy

o type
FIGURE 1. Intuition for Prop. 2
) 6i(s) < 8j(s) andBi(s) < Bj(s).

i) si(-) >s;(-) ontheinterval(8;(s),8i(s)).
Further, there exists N N such that

i) ifn > N and g is non-degenerate, thef(g = a.

iv) if n> N and s is non-degenerate, thef(s) = a.

In the discussion of Prop. 2 that follows, we will say that &@esp.a) constraint isbindingon

r at 0 if the unconstrained optimal response of playef type6 tos_, strictly exceeds (resp. is
strictly less thara). Note significantly that by continuity, thee(resp.a) constraint isnot binding
onr at 6 (s) (resp. 6¢(s)). The key to the proof of Prop. 2 is the observation tha ifind s;
form part of an equilibrium profile, then at any typé belonging to the (necessarily nonempty)

set®* = argmin(si(-) —sj(-)),
eitherthea constraint is binding onor thea constraint is binding on (or both). (9)

To verify (9), consider the pair of strategi€s, s;) illustrated in Figure 1, which has the property
that at®* = argmin(s(-) —s;j(-)), thea constraint is not binding ohand thea constraint is not
binding onj. The strategies depicted in the figure cannot form part of &ENrofile. To show
this, we assume thaf is a best response tg,s_; j), and conclude tha cannot be a best response
to (sj,s—i,j). LetAa= (5(8*) —sj(6*)) and consider playey's decision. Becausedepends only
on the average announcemets), and sinces; is by assumptiorj’s best response t&(s_i j),

it follows thats;(6*) + Aa = s(0*) must be player-typ¢j,8*)’s best response t&(— Aa,s_j j).
But this observation implies that(6*) cannot bei, 8%)'s best response tsj(s_i j). To see why,

note that since > kj, it follows from A5(ii) that against thesamestrategies(i, 8*)’s optimal
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response must strictly exceefl 8)’s: in particular,(i,8*)’s best response ts(— Aa,s_j ;) must
strictly exceed j, 6%)’s, which iss (8*). Next, by definition of6*, s;(-) < s(-) —Aa, so property
(6) implies that(i,8*)'s best response {;,s_i j) must exceed his best responsége-Aa,s_j ),

which, as we have shown, exceexi®*). Thus,s cannot be a best response($p,s_i ).

The first two parts of Prop. 2 follows almost immediately fr@®). If either of the two constraints
mentioned in (9) is satisfied, thes(6*) —s;(6*) > 0. Since6* minimizes (s(:) —sj(-)), the
function is nonnegative on its entire domain. Part i) of thepesition now follows immediately
from the definitions in (1). Moreover, since neither playecanstrained o(8;(s), 6 (s)), property
(9) implies that(8;(s),8i(s)) cannot be part 0®*, implying that on(8j(s),8i(s)), s(-) —sj(-) >
S(8") —sj(6*) > 0, establishing the strict inequality in part ii). To motigahe third part of the
proposition, first note that since the domainuds compact, all relevant derivative functionsiwof
are uniformly continuous, and, if always non-zero, therythee bounded away from zero. Now
suppose that there is a player-ty{ged) whose first order conditiorluj’(sj (0),6;s_j) is zero. For

i with ki > kj U/(s;(6),8;s_i) exceedsU/(s;(6),8;s_j) by an amount that is big oh of/h.'®
SinceU/(-,-;s_j) depends on’s type and announcement only through the mean type and mean
announcement, the effects &f(-,-;s_j) of i’s announcement and hs type are big oh gh2
SinceA is compactj’s response is pushed to the upper edgé ek n increases without bound.
The proof of the fourth part is analogous. An immediate irgdiion of (9) is

Proposition 3 (At most one player is unconstrained)in any MPE, at most one player’s strategy
is almost-never-constrained.

To verify Prop. 3, observe from (9) thatiifs not up-constrained & € ©*, thenj must be down-
constrained. Since by definitid®* is nonempty, in equilibrium it can never happen that bgth
ands; are almost-never-constrained. That is, regardless of it wf the announcement spage

an equilibrium cannot exist unless misreporting by all iumast one player increases to the extent
that with positive probability, their announcements anestmined by one of the boundaries. Thus

Prop. 3 highlights the role of the announcement bounds iarergsthe existence of MPE.

We conclude this section with a discussion of the class ateggies on which we will focus for the

remainder of the paper. Letting) denote the identity map d®, playerr’s strategy is said to be

134 function f(x) is said to be big oh of(x) if there existaM € R such that for alk, | f(x)| < M|g(x)|.
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constrained unit affine (CUAJ for someA € R, s(-) = min{a,max{a,1(-) +A}}
unit affineif neither bound on the announcement space is bindingifi®(:) =1(-) + A

The defining property of a CUA strategy is that the extent’®fmis-representation of his type
is independent of this type, except whetis constrained by the boundaries &f The param-
eter A; indicates the extent of this mis-representation. A CUAtstw is unit affine iff it is
also almost-never-constrained. CUA strategies are a apeleiss of nondegenerate strategies
that play an central role in our analysis. Next, note thatdbeof degenerate CUA strategies
{s(:) = min{a,max{a,1(-) +A}} : A\, < a— 6} are all functionally equivalent: in each case,
s(-) =a Similarly all CUA strategies with\; > a— 8 are equivalent. Hence we can impose
without loss of generality (w.l.0.g.) that

s(-) = min{a;max{a,1(-) +A}} is anadmissible CUA strategff A, c A=[a—6,a—0]. (10)
Sincea> aand® > 6, the set\ is nonempty. Observe from (1a) and (1b) that ifs CUA, then

B(s) = min{Ba—N\} < ma{8,a-A} = B6(s). (11)

If © C [a,a] we say that the announcement spadadtusive It follows from (11) that

if @ is inclusive then no CUA strategy is bi-constrained (12)

To see this, note that ® is inclusive and\; > 0 thens;(8) = 8+ A; > a+ A > a; similarly, if

Ar <0thens (0) <a,

4. AGGREGATION GAMES WITH COMMON PREFERENCES
Assumption AL(ii) specifies that all players have distingservable characteristics. For this sec-
tion only, we reverse this assumption, and consider gamegiich players’ observable character-
istic are identical. We also assume that the announcemanésg inclusive, so that truthful type
revelation is feasible. This analysis will serve as a usb&richmark when we consider games
in which players’ observable characteristics are hetareges and when the bounds on the an-

nouncement space preclude complete truthful revelatidve analysis highlights the importance
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of unit affine strategies: we will show that mplayer games, there are equilibria—including one
characterized by truthful type revelation—in which plag/estrategies are unit affine and satisfy a

strong efficiency criterion. Moreover, in two-player gameguilibrium strategies aneecessarily

unit affine, andall equilibria satisfy this criterion.

We now introduce our notion of efficiency. An actign ) is abest conceivable respongar
player-type(r,8) tos_, if forall s, and alla€ A, U;(s(0),6;s_) > U, (a,0;s’ ;). When a player-
type’s action is a best conceivable response to other ageategies, this player’'s expected
payoff could not be higher, even if he had total control over strategies played by all other
players! An MPE is now defined to ledficientif every player-type’s action is a best conceivable

response to other players strategies. This is clearly apragly stringent notion of efficiency.

A strategy profile will be calledero-sum unit affine (ZSUAf)each player’s strategy is unit affine
and if there is truthful revelation in aggregate. Specifjcdet A ={A € A": 3! ;A =0}. A
strategy profile is ZSUA if for som& € A, s = 6, +A;, for eachr.'* Given a profiles, p(s)

is identically equal tqu(0) iff s is ZSUA; that is, ZSUA profiles truthfully reveal types in the
aggregate and vice versa. A special case is vher?, i.e., each individual agent reveals his type.
The following proposition highlights the intuitive factahin an aggregation game, incentives for
strategic behavior arise only when there areantedifferences between agents’ characteristics,
i.e., theirk’s.

Proposition 4 (ZSUA profiles as equilibrium strategies): Consider an inclusive aggregation

game in which k= k for all r. A sufficient condition for a strategy profile to ba equilibrium is
that it is ZSUA. Further, a ZSUA equilibrium is efficient.

The proof of Prop. 4 is immediate. Considet (Ar,A_;) € A. Necessarily\; = — Yi+rAr. Inthe
ZSUA strategy profile correspondingXo player-type(r,0) reportss; (6) = 8+ A,. Consequently

Ur(sr(8),8;s 1) = /eu(t(s(a),m,s,i)h(a)da = /eu(t(s,k),a,i)h(a)da

Since players’ observable characteristics are all idahttbe social welfare function (defined in

(2)) coincides with each player’s utility functiom(t,0,k) = u(t,0,k). Since the outcome function

is assumed to be CISE, we have- argmaxu(-,0,k) for every® € ©, Thus, the ZSUA profile

14CIearIy, for any vectoA with A, < (a—8) (orAr > a—6), s = 6, +A, would not be admissible for types in some
neighborhood 08 (or 6).
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maximizes the expected utility of every player and conttgwan MPE. Further, since each player

obtains the highest possible utility, the equilibrium isaéfficient.

When there are only two players with identical observabigatteristics, we can go much further.
In this case, the preceding and following propositionsltdistha that a profile is an equilibrium if
and only if itis ZSUA, i.e.all equilibria are efficient

Proposition 5 (MPE are ZSUA):T Consider a two player inclusive aggregation game wijtk k;.
A necessary condition for a strategy profile to be an MPE i$ itha ZSUA.

strategies
strategies

07 +1(-)
SICHEEI0!

SC) ()
si()

1D,
D

FIGURE 2. Intuition for Prop. 5

Figure 2 provides some intuition. Consider a strategy thabi unit affine, such ag in the left
panel of the figure. Letting(-) denote the identity map, the maximum valugdf) —s;j(-)) isA,
which is achieved uniquely @q‘.m We first establish that a necessary conditionsfdp be a best
response tg; is that(s(-) —1(-)) is everywhere strictly less than To see this, consider a strategy
such ass satisfying, for som&;, (§(6;) — 6;7) > A. Given any such strategy forthe aggregate
strategys16;) + sj(-)—i.e., the highest curve in the left panel—must lie abovelithe8; +1(-)
with probability one. That is, for player-typ@,8;), the average of players’ announced types
exceeds the average of their actual types with probabitiy. &Sincet(-) is CISE and the social

welfare functionw(-) coincides withi’s and j’'s common utility function, the outcome generated

15An immediate implication of the argument below is that whéayprs’ observable characteristics are identical and
the announcement space coincides véththen theuniqueequilibrium for a two-player aggregation game is that
players truthfully reveal their private information withgability one.

16Uniqueness is not required, but it simplifies the intuitixpesition.
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by (sj,§) must be super-optimal fdr, 8;) with probability one. Conclude th&f + A is not a best
response fofi, 8") againsts;(-); more generally, fos to be optimal against any not unit affine
sj, it is necessary thas (-) —1(-)) < max1(-) —sj(-)). Now consider any strategy satisfying this
necessary condition—e.g., the dashed csriv¢in the right panel—and observe that the aggregate
strategys;(6]) +s (-) is everywheréelowthe linej +1(-), and hence sub-optimal fof, 87). We
have shown, then, that the actisjif}) cannot be a best response {¢r67), againstany strategy

that could possibly be a best response against the arlyitcasen, not unit affineg;(-).

5. GAMES WITH QUADRATIC PAYOFF FUNCTIONS
In our introductory discussion in 81, our players reportethe center, who took an action,that
affected all of them. For the remainder of the paper, we abstrom the issue of how the center
uses the information that players provide and assume, giriat each player incurs a loss that
is quadratic in the difference between that player’s okde/characteristic and the gap between
the means of actual and reported information. Formally, efend the utility function for a player

with observable characteristicas the biased quadratic loss functign:
uTpu®).k) = —(k+p®)-1)?° (13)

With this specification, the CISE property requires the eetd average the types that players an-
nounce: = t(s,k) = p(s). A game with utilities given by (13) will be calledguadratic aggrega-
tion game It is straightforward to verify that given) (13) satisfies Assumptions A4-A6. The goal
of a player with observable characteridtic- O is to induce the center to overestimate the value of
K(0) by an amount that is as close as possible tBpecifically, the optimal expected outcome for

a player with observable characteridticand type paramet&; isEg_ t =k +Eg_ p1((6r,9_r)).

This quadratic specification is consistent with either @& two interpretations of our model pro-
posed in 81. For the non-statistical interpretation, thegi@ship is self-evident: players lose util-
ity with the square of the difference between the composiessimplied by players’ actual types,
adjusted by the player’s personal bias, and the score thatehter would compute by aggregat-
ing players’ announcements. Under the Bayesian interjiwataeach player loses utility with the
square of the difference between the posterior mean comhjpytéhe center from announcements

and the one implied by actual types, again after adjustinthiplayer’s bias. Under very general

17as noted in fn. 5, this specification is very widely used.
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conditions, the posterior mean is an affine function of thepla mean' If the posterior mean is

defined adp + b1p(0), the loss function implied by our Bayesian interpretation i

2 2

— (K+ (bo+b11(8)) — (bo+bapi(s)))® = —(k+b1(u(8) —u(s)))” = —(k+ba(1(®) —1))°.

By choosing appropriately the units of the vedtpwe can seb; = 1 and recover (13).

While this Bayesian interpretation is suggestive, thera motable distinction between our qua-
dratic loss function and the canonical Bayesian loss fonctiTo best appreciate the difference,
consider (13) for an unbiased player, i.e., lset 0. Then the only source of loss is that players
mis-report the signals they receive; our players are mddateuninterested in the difference be-
tween the mean of their signals and thee mean of the distribution from which their signals were
drawn. In the classical Bayesian problem, on the other thedatter difference is all that matters;

the possibility of mis-reporting does not arise.

In most respects, this distinction is unimportant and oecgjcation captures exactly what we are
interested in, i.e., the information losses that arise beeplayers are strategic and are constrained
by the boundarie&? In one respect, however, the omitted difference is significa a game small
enough to admit non-degenerate strategies, it does natregpe full welfare impact in a Bayesian
setting of increasing, since it ignores the welfare benefit of increasing the greniwith which

the aggregate signal estimates the true mean (i.e., regith@rsecond term in (14)). As an extreme
example, when all players have the same observable chaséictas in 84, our players attain their
first-best outcomes in every game, regardless; dfad we defined players’ utility as a standard

Bayesian loss function, the first-best would be approachédasymptotically.

5.1. CUA strategies. The quadratic specification ensures that equilibriumegias will be CUA
(see p 17). Given the utility (13) and outcome functiosik) = p(s), if r were not required to
respect the admissibility bounds (10) dn his optimal response &, would be the UA strategy

18gernardo and Smith (2000, Proposition 5.7 (pp. 275-27&abdishes this for exponential families of distributions.

19Forinstance, if th®;’s were independently drawn from a distribution Wighe;) = 6' and players’ utility depended

on the true meaf! rather than the average realized sign@), the expected quadratic loss would be
~Ek+6-12 = —Ep(k+p@) -1+6—p@)? = -Ep(k+p®)-12-Ep(6'—p®)2 (14)

The first part of the loss arises entirely due to misrepordind coincides withu(-) in (13); the second part, which is
precisely the canonical Bayesian loss function, is omittech our model.
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O + Ar, Wwhere
)\r:nkr-l—_; Es, (i —si(9i)). (15)

In general, the UA respon$ + A, will not belong toA for all values off;, particularly if |k| is

large. Accordinglyy’s constrainedptimal response will be

S (6r) = min{a,max{6; +A,,a}}. (16)

To identify an NMPE, we need to compute theector which solves the set afequations in (15)
subject to the constraint (16). As a first step, wegl€t) denote player’s deviation from affing
defined as the difference between the CUA stra@y and the UA strategy(-) + A,. GivenA,,

let E¢, denoter’s expected deviation from affine

E&, Es,(5(8r)—(8r+Ar)) = Ey, (min{famaxad, +A}}—9) — A (17)

or 6 .
= [T (@ —90dH(®) + [ (@ —91)dH(®:). (18)
where, from (1a) and (1bB:(A;) = a— A and 8, (Ar) =a—A;. Thusgg, is a measure of the
impact of the bounda anda onr’s expected announcement. Clearly,
if r is single-constrained artek, # 0, A{E&; < 0. (29)

Since we focus exclusively on CUA strategies in the remaind¢he paper, we will sometimes

use the symbol,; as a shorthand for the uniquely defined CUA strategy withrpatarA,.

We note in passing two implications of (17) and (18) that wk uge later. First, aggregating the

identity in (17) across players and rearranging, we obtain
Es(U(s"(®) — u®)) = HQA") + W(EE). (20)
Second, differentiating (18) w.rA, and inferring from (11) thaiti (6;) < H(8):

dEE,
dA,

= - (H(Qr) +1- H(ér)) c  (-1,0 (21)

dE&,

a 0 iff r is almost never constrained
;

and
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Substitutingd; — s(6;) = —(Ai +&;) into (15) and rearranging, it follows thatAf is an MPE,

nk = EAHZEEi(A?), for all r with A € int(A). (15)

Figure 3 provides some intuition for (95 for the simple game with two playeisand j and
0 < ki = —kj. The figure is a diagonal cross-section of the three-dinossigraph fron® x ©
to outcomes, that is, the graph depicts the eventitlaaid j observe the same private signals.

Playeri is up-constrained while playgris down-constrained. The thick kinked line represents

I's strategy\

0 g Player types
iI’s ideal outyé
Area=EE;(\;)| = 2k \ |
J’s strategy

a ]

outc

FIGURE 3. Intuition for display (19

the outcome as a function of type realizations, given the players’ strategies. The important
property highlighted by the kinked line is that wh@n> 8; (and®; < [, 8;]), the realized outcome

is anunderestimate of the realized type, while wheépn < 8; (and; € [Qi,éi]), it is an over
estimate; whe®, € [Qr,ér], forr =1, j, the outcome accurately reflects the aggregate signal. Now
consider the outcome from playgés perspective and for concreteness, supdse 0 and the
horizontal axis representss type. Playeli’s ex postddeal outcome, as a function ¢fs type,

is represented by the dashed line above the diagonal: foy eadue of j's type, i’'s ex poste
ideal outcome exceeds it by. When j is unconstrained, his under-report exactly counteracts
i's over-report, resulting in an outcome that is suboptimaihfi’'s perspective; however, at low

values offj, the constraina binds j’s under-reporting, resulting in an outcome exceedingleal
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outcome. Equation (Ipdescribes how the over- and under-estimates are balanegglilibrium:

the expected over-estimate of the true average equals tinaaexpected under-estimate.

The following, immediate implication of (1pwill prove very useful in what follows. IA* is an
MPE, then for ali, j with A, A7 € int(A),

n(k—kj) = E&(A]) — E&(A). (22)

To motivate (22), suppose > k; and bothi and j are up-constrained. From part ii) of Prop. 2,

ki > kj impliesA; > Aj, so the constraira binds more tightly on than onj, i.e.,E§; < EE;.
Proposition 6 (Uniqueness of MPE)f Every quadratic aggregation game has a unique MPE.

5.2. MPE outcomes and payoffs.The quadratic setup allows us to analyze each player’s equi-
librium performance: to what degree the outcome of the garatimes his ideal outcome, and
how his payoff depends on player characteristics. We begimtboducing a notion describing
the degree to which each player “gets what he wants” in dafuilin. We define as a benchmark
the complete information personally optimal (CIPO) outcofaeplayerr: this outcome would
maximizer’s payoff if he had complete information about the averagetyWe denote this “ideal”

outcome fronr’s perspective by(0,k;). From (13),r's CIPO outcome is
tO.k) = u®-+k. (23)

If u(s*) is the equilibrium outcome of the game. then the differeBg¢p(s*(8)) ) —{(8,k)),
which we label as’s expected CIPO deviatiois a measure of the degree to which the equilibrium
outcome differs in expectation from playes CIPO outcome. Prop.7 below establishes that in
an NMPE, the expected CIPO deviation ignltimes the size of the player’s expected deviation
from affine. This result is striking because the latter delseonly onr’s strategic choice, while the
former depends oall players’ choices. Note also from (19) that a single-comstgplayer who
over- (under-) reports his type can expect a sub- (supetihapoutcome.

Proposition 7 (The expected CIPO deviation)t If s* =0-+A* is an MPE profile of a quadratic
aggregation game, andl’ € int(A), then r's expected CIPO deviation i$HEA;)/n.
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Since the expected deviation from affine measures how yighé announcement bounds restrict

r’'s action in equilibrium, Prop. 7 indicates that a player s#a@ction is more restricted is less

likely to obtain his CIPO outcome in expectation.

After r learns his typé,, a parallel measure of deviation from his ideal outcome ésitikerim
expected CIPO deviatiguefined as the differend® , (H((sf(6r),s* (8 —r))) — (6,9 1), k)),
whereEy_ {((6;,9_r),k) =Es_ H((6r,9_r)) +k isr’s interim expected CIPO outcom8imilar

to Prop. 7, Prop. 8 establishes thatinterim expected CIPO outcome is implemented in equilib-
rium if and only if his strategy is unconstrainedéat

Proposition 8 (Interim Implementation): T For a player r of typed,, his interim expected CIPO

deviation equals zero, or his interim expected CIPO outc@maplemented in equilibrium, if and
only if his strategy Sis unconstrained af; .

The previous discussion indicates that playsexpected deviation from affine i.e., the expected
degree to whichi’s strategies are restricted by the announcement bounidstismental in deter-
mining whether gets “what he wants.” We next illustrate how the deviatiemniraffine affects

a player’s expected equilibrium payoff. From (1B} expected payoff from a strategy profiie

is —Eg (U(3) +k —(s)))?, i.e., the expectation of the squared difference betw&e@IPO out-
come and the realized outcome. For an arbitrary prafilthe expression for this expectation is
exceedingly messy, reflecting the complexity of the inteoas between multiple players’ devia-
tions from affine: in some regions 6, the distortion resulting from different players’ conétita
offset each other; in others they are mutually reinforcihg.equilibrium, howeverall of these
interaction terms disappeatr, leaving only the first and sgcooments of players’ deviations from

affine. Specifically, eV &, (A;) denote thedx antg variance ofr’s deviation from affine, i.e.,
V& (Ar) = Varg (s (9r) — (9r +Ar)) (24)
Note thatv&, (A;) depends only on’s owntype realization. We now have:

Proposition 9 (Equilibrium Payoffs): T Lets* =8+ A* be an MPE profile of a quadratic aggre-
gation game. For each player r witkj € int(A), r's expected equilibrium payoff is

EpU(H(s ). u(®) k) = —Es (H®) +k —n(s"))” = — (W(VEA) /n + (E&(N)/M)?). (25)
Prop.7 and Prop.9 are complementary. Prop. 7 establisla¢gldyerr’'s expected CIPO devi-

ation coincides with his expected deviation from affine, atefl byn. But equilibrium expected

payoffs depend osquareddeviations from affine. Prop. 9 shows that players’ expepubffs
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are equally negatively impacted by the variances of eadtrstteviation from affine; the sole fac-

tor distinguishing two players’ expected payoffs is thdeddEnce between their squared expected
CIPO deviations.

We next study the aggregate equilibrium payoff of the playErom a normative perspective, there
are two benchmark measures of welfare that we might conslder more obvious is the average

of players’ equilibrium expected payoffs. We refer to trssagerage private welfatedefined as

APW = %a(iu{u(S),u(ﬁ),h)) (26)

Alternatively, one could take the view thabcial welfare should be evaluated from anbiased
perspective, i.e., from the perspective of a player whosemfable characteristic is zero, reflecting

a preference for truthful revelation. Accordingly we defimbiased social welfaras
USW = Esu(l(s),u®),0) = Es(u®) —u(s)?. (27)

Our assumption thgf; ki = 0 implies that APW and USW differ only by a constant. Spedifica

APW = ——EsZ 9)+k —u(s))?

~ —%{Izlé + 23 kEp(u®)—u(s)  + nEa(u(ﬁ)—u(S>)2}
= USW + SK/n
From (47) the following result is immediate.

Proposition 10 (Unbiased Social Welfare): If A* is an MPE profile of a quadratic aggregation
game, then unbiased social welfare is given by

usw = —{i(VEA") /n + (R(EEAY))+R()?] (28)

5.3. Anchored Games. The discussion so far illustrates the central role the exgoledeviation
from affine plays in affecting equilibrium payoffs. Thereaiglass of games in which some player
j’s expected deviation from affine is zero. This property Bafceither j’s strategy is never con-

strained or if the constraints grassociated with the two announcement bounds cancel eagh oth
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out in expectation. We later study games in which sughalwvays exists: in 8§6j is the “middle”
player in a symmetric game; in 87, the “largest” player in mgan whicha never binds. We refer
to such a game as amchored gameand to playerj asthe anchor An anchored game exhibits
strong properties and is particularly easy to analyze.&amchoredness is defined in terms of an
equilibrium property—whether or not some player’s expédaeviation from affine is zero—we
must first prove that a game in a certain class has a unique R&Exhibits this property, before

invoking the properties of anchored games identified in Prd@nd Prop. 12.

Proposition 11 (Properties of anchored games)LetA* be an MPE profile of an anchored qua-
dratic aggregation game and let j be the anchor. For each @taywith Aj € int(A),

) r's expected deviation from affine igk) — k),

i) r's expected CIPO deviation i&; — k),

Parti) is obtained by combining (22) with the defining prapef an anchored game, i.€&¢ ()\’j‘) =

0. Part ii) then follows from Prop. 7. Strikingly;s expected CIPO deviation depends exclusively
on the gap betweejis observable characteristic and, while r's expected deviation from affine
depends both on this gap andTo see why the latter is proportionalmprecall thatr’s objective

is to shift the mean announcement by a magnitgdeat is independent of, the greater is, the
smaller isr’s contribution to the mean, and hence the more musis-report. Note that the more
mis-reports, the more likely it is that he will be constralrey the announcement bounds. To study
anchored games, we add assumption A7 to A1-A6. Parts (i)igredniplify our anlysis. Part (iii)
ensures that every anchored game has an NMPE.

Assumption A7: (i) The announcement space is inclusive (cf. p. 18); (ii)tshee distribution is
uniform with density parametér=1/(86 — 0); (iii) ||k||» < (6—8)/4n.

The combination of a quadratic loss function (13) and a umfdistribution over types (A7(ii))
is very widely used® A7(iii) guarantees that our MPE is non-degenerate: it isledebecause
if the K's are far apart and is sufficiently large, outlying players, attempting to stéee average
announcement in their favor, will choose strategies thatanstrained with probability one by one
of the announcement bounds. To verify that A7(iii) guarastthat this will not happen, it suffices
to check tha€g, (A7) = n(kj — k) is consistent witk\; € int(A). Assuming w.l.0.g. thak; > 0,

205ee Crawford and Sobel (1982), Gilligan and Krehbiel (198%)shna and Morgan (2001), Morgan and Stocken
(2008), and many others.
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(18) implies:

a—A}

sothat \; +8-a = \/éEEr = \/%n(kj_kﬁ if A €int(A). (29)

The last equality follows from Prop. 11. Also, from A7(iii),

GO = [ @@ < om(y o)

all

k)M < Tl No-g)/an = (8-97

so that\, = /2n(kj —k)— (8—a) < ((8—8)— (6—a)) =a— 6, verifying thath € int(A).
For anchored games satisfying A7, we obtain a closed-foqpnession for equilibrium payoffs.

Proposition 12 (Equilibrium Payoffs in Anchored Games)? Let j be the anchor in an anchored
guadratic game satisfying A7. Then player r's expected ffayan NMPE is

Esu(u(s’),n®) k) = —{Z\(kj_kiy(\/ﬁj_m—1>+(kr—kj>2} (30)

< —{_i(kj—mz/sﬂkr—knz}.

Expr. (30) thus establishes an upper bound on expectedfpdiiat declines witm. As shall see
below, however, this doesotimply that expected payoffs themselves decline monotdigicaln

the following sections, we study how the equilibrium outeoand aggregate welfare are related
to primitives of the game such as the vedtand the bounda anda. For an arbitrary quadratic
game, it is impossible to obtain closed-form expressiongHese effects. Accordingly, we will

focus on two special classes of anchored games for whickdaifteym results can be obtained.

6. SYMMETRIC GAMES

In this section we study games which are symmetric in a sts@mge. We say that the observable
characteristic vector is symmetric if for every playewith k- > 0, there exists anatched player r
with kr = —ki~. There may in addition be one moreiddleplayermwith ky, = 0. In 86.4 below, we
will refer to players whose observable characteristicpasitive (resp. negative) as thight-wing
(resp. left-wing) factionWe say that the announcement space is symmetric if the acement

boundsa anda are symmetric about zero, i.e. df= —a; finally, we say that the type distribution



-30-

is symmetric ifd6 = —8 and if 8 is symmetrically distributed around its mean zero. We now sa
that a game isymmetridf all these conditions are satisfied. We will refer to a garags$ying
A1-A7 as asymmetric quadratic aggregation garf®QAG).
Proposition 13 (NMPE of Symmetric Games)t Every SQAG has a unique NMPE satisfying:
E&r (Af) = —nk, for all r with A; € int(A). Moreover,

i) for each player and matched player,Af = —AF;

i) if there is a middle player m, theky,, = 0.
The middle player, if there is one, is the only player who amues truthfully in equilibrium. Any

other player always mis-announces and his expected davitxtom affine is determined entirely
by his observable characteristic amdSymmetric games with a middle player are also anchored
games (see 85.3). Itis clear from Props. 13 and 7, howewisyimmetric games without a middle
player exhibit the same properties as those that have or&rdamline the exposition, we shall in

the remainder of the section tredt symmetric games as if they were anchored.

It is immediate from Props. 9 and 13 thi& equilibrium expected payoff is entirely determined by

k. and the average of the second moments of all players’ deamfrom affine.

EpU((s"),1(®) k) = — (H(VE) /n + F) {zl@(wgh‘h >+k$} 25)

The second equality is obtained by substituting zerdkfan (30). (27) and (25 now yield an

expression for unbiased social welfare:

o 8
USW = ZK( — 1) (31)

Prop. 13 provides us with a powerful tool for analyzing anchparing the welfare properties of
aggregation games with different parameters. The thresnpeters we study in the remainder of
this section are: the number of players (86.1); the magaitfdhe bound on the announcement
space (86.2); and the heterogeneity of players’ obsendad@eacteristics (86.3). Throughout this
section, whenever we make a statement relating to ed{r&ior k-, we will be implicitly making as
well the matching statement abdita, or kr. In particular, when we study the effect of increasing

a, we will be simultaneously, but implicitly, reducirato preserve symmetry.
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6.1. Effects of changing the number of players.Since symmetric games are anchored, at least
some of the impacts of changingre straightforward: a player’s strategy (although nophigoff)
depends only om and his own observable characteristic. From Prop. 11, aeptagxpected
deviation from affine is proportional to, while his expected CIPO deviation is independent of
n: asnincreases, each player except the middle one mis-repoats ilmcreasing extent, while in
equilibrium the net expected effect of players’ distori@n the center’s decision is unchanged.
The effects ofn on expected payoffs and welfare are more complex. While e there is
no closed-form expression fof,, A7 allows us to obtain determinate results. We will compare
expected payoffs and welfare for a finite sequence of “coatgal games with more and more
players. To make the games comparable, we relax assumgti@ih far the remainder of 86.1 and
construct our sequence by clonimgimes a base game witiplayers and observable characteristic
vectork.?! To ensure that A7(iii) is satisfied, we require that< M = |1/(4qh/|K||»)].2? Now
consider the aggregate welfare UGW in them'th game. Since from (31) and (95the difference
between USWm) and playerr’s expected payoff is independent of the comparative statics

results we obtain for welfare apply also to payoffs. Rewgt(31):

uswim = —myk( 8 1) = v (me_ JFE) e
N i;I Imahiil N i; ! 9gh

If mwere a real number rather than an integer, USW would be canvexwith

duSw

WO 3 (¢ /2w oman) 32

Thei'th element of the summation i$ 0 as|ki| = 2/(9mgh). LetM’ = max{m <M : [[K||e <
2/(9mgh} andM” = max{m € N : |k;| < 2/(9mqgh),Vi}; If hM is sufficiently small,M’ < M
(since 29 < 1/4) while if, in addition, maxK;| — min; |ki| is sufficiently small,(M”,M] will be

non-empty. Clearly, USW) is strictly decreasing ofi,M’) and strictly increasing ofM”, M].

21The argument below could be made rigorous without violatisgumption AL(ii): simply clone as we propose, and
then perturb the cloned vector slightly to ensure uniquendsle preserving symmetry. In our view, the loss of rigor
involved in our approach is justified by the gain in parsimony

22rorx € R, |x] denotes the greatest integer not exceedingor m < M, the game wittm clones ofk hasn = mq
players. so thatk||. < 1/(4mgh) = (8 — 8)/4n, verifying that A7(iii) is satisfied.
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These results reflect the tension between two effects iasreases. The first is that players need
to mis-report more to accomplish the same expected CIPCatien] this lowers welfare. The
second effect reflects the law of large numbersnascreases, it becomes increasingly likely that
players’ deviations from the mean of the type distributiall @ffset each other, and hence their

individual deviations from affine will be mutually offsetty also. Prop. 14 summarizes:

Proposition 14 (Comparative statics w.r.t.n): In the unique NMPE of an SQAG:

1) each original player’s expected deviation from affine isgortional to n.
i) each original player’s expected CIPO deviation is ingéepent of n
For a finite sequence of games obtained by cloning m timestaruee K9;
i)  USW and expected payoffs are convex with respect to theeruh clones
i)  Supposg|K||» < (8—8)/4n, i.e., the players are relatively homogenous in
their observable characteristics. Then USW and player ebgoepayoffs ini-
tially decrease, and then may increase, with the numberoofad.

To reiterate, these results should be evaluated in the xtorftéhe non-statistical interpretation of

our model, rather than the Bayesian one (see p. 1 and p. 22).

6.2. Effects of changing the announcement boundsFrom Prop. 13, players expected devia-
tion from affine,E&; (-), is independent of the announcement boandf k; = 0, expression (18)

then implies that aa changes), must adjust so thd&¢g, (-) remains equal tak.. Specifically:

Proposition 15 (Effects of changingg):T In the unique NMPE of an SQAG:

(0 if r is the middle player
1 if r is up-constrained
dA, I :
& -1 if r is down-constrained (33)
(1-H(8))—H(8r) 1 is bi ined
R@ T AG) 1S bi-constraine

Whenr is bi-constrained, the denominator%& is the probability that is constrained by at least
one of the announcement bounds. The numerator is the diffefgetween the probabilities thrat
is up- and down-constrained.ris single-constrained, he increases the degree of his poidneg

at exactly the rate that the bounds are relaxed; he respooissiowly if he is bi-constrained.

We now consider the welfare effect of a marginal change imnatiuncement bound. First note
that if the announcement space is inclusive, no player wilbibconstrained in equilibrium. Then

players withk £ 0 will adjust their announcements to fully compensate for ehange in the
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announcement bounds. Hence, players’ utilities, as wellgasegate welfare, will be unaffected
by any change in the bounds. Specifically, recall from Prdpa®r’s expected payoff depends on
the first moment of’s own deviation from affine, as well as the second momentd| glayers’
deviations. If there is a middle play¢r &; = 0 always and thug¢; andV¢; are unaffected by
changes ira. For any other player, since the change ik fully compensates the changeanthe

deviation from affing; (or its distribution) remains unchanged, so do its first awbad moments.

This independence property no longer holds when at leasplawyer’s equilibrium strategy is bi-
constrained. For some intuition for this difference, Fegdrconsiders the impact of relaxing the
announcement bounds, when the only bi-constrained playkeeimiddle playem. Whenevem's
type lies outside the intervé, a], obliging him to mis-report his type, all players are negglti
impacted. The areas of the large triangles at either endeofytbe spectrum indicate the magni-
tude of the distortion. When the bounds are relaxe@t@], the sizes of these triangles shrink,
reflecting a decline in the variance wis deviation from affine. Ex ante, this change benefits all
players equally, since, from Prop. 9, each player’s payodfieicreasing in thital variances of all
players. Prop. 16 provides an expression for the rate athaioi-constrained player’s variance
declines with a relaxation of the bounds. The more playersmatially bi-constrained, the greater
is the collective benefit of a relaxation.

Proposition 16 (Effects of increasing the announcement bawd &):T In the unique NMPE of an
SQAG, as the announcement space expands:

i) ifinitially the announcement space is inclusive, theiklgaum expected pay-
off of every player remains constant;

i) if initially some player is bi-constrained, then eachaper’s equilibrium ex-

pected payoff is equally positively affected, as is unhiesecial welfare.
Specifically, letting 1 denote the set of players who are bi-constrained in

equilibrium, player r's expected payoff increases—b#z Siel %, where
dvgi 4 "
da  H(8)+(1—H(®))

9.

_ 5
{(1—H(6i))/ (81— 61)dH(9)) — H(@i)[_ (Si—Gi)dH(Si)} <0 (34)

6

Prop. 16 delivers a clear policy message, at least in theegbaf symmetric games. Recall from

(12) that a necessary condition for a player to be bi-comstthis that the type space is not a
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subset of the announcement space. When, as in the present {heptype space is known by the
policy-maker who sets the announcement bounds, it is Papttmal to select an announcement
space large enough to contain the type space. More genearfdipurse, the bounds on the type
space will not be known with certainty. In this case, sinég @ostless to expand the announcement

space, and possibly costly to contract it, the announcespate should be as large as possible.

9 player types

m's orlgmal strateg
m's new strateg /< /\ :
% ~———signal | :

FIGURE 4. Intuition for Prop. 16

6.3. Effects of increasing player heterogeneity.In this subsection we study the impacts on the
equilibrium outcome and on welfare of changes in the vektoirobservable characteristics. To-
tally differentiating the identitfgé, = —nk; in (50) w.r.t.k, andA,, we obtain

dAr n
d = H@)+(a-AG)y " (39)

where the denominator equals the probability with whiclyefa is constrained by the announce-
ment bounds. Thus, &g increases); also increases, and at a faster rate, to maintain the equilib
rium property thaEg, = —nk.. From Prop. 7 we know that &sincreases and thyBg, | increases,
the difference between the expected equilibrium outconde ‘'arexpected CIPO outcome also in-

creases. Consequentlg expected payoff decreases. Prop. 17 quantifies this tieduc
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Proposition 17 (Effects of dispersing players’ observableharacteristics):" In the unique
NMPE of an SQAG, ifk# 0, then

1
H(6r)+ (11— H(8))

dV§,
dik|

2n? ke | -1 > 0 (36)

To see the effect of increasirkg on players’ expected payoffs, we totally derive the rightdha
side of (25) w.r.tks, noting that to preserve symmetﬁ% = —1, wherer isr's matched player. As
krincreases;’s andr’s welfare decline b)(%%?—i- 2k,—) ; for other players, the decline ié%?.
6.4. Effects of increasing inter-faction player heterogeneity The results in 86.3 are hardly sur-
prising: as players become more heterogeneous, the extédmeio mis-reporting increases and
this reduces welfare. The impact of an increasmiar-factionheterogeneity is less obvious. To
explore this issue, we will reduce notation by assuminghis subsection only:

Assumption A8: (i) [6,0] = [—1,1], so thath(-) = 1/2; (ii) there is no middle player, so that each
faction ham/2 players; (iii)n is divisible by 4.

Letk' € (0,1)"2 be a strictly increasing vector, denoting the observablratteristics of the
right-wing faction?3. Pick a vectora € RY? and letdk = (—a,a) € R"V2. We will consider

a family of right-wing profiles of the fornv{l?r +vydk: y~ 0}. The observable characteristics
of the left-wing faction are implied by symmetry. An increai® the nonnegative scalgurep-
resents a faction-mean-preserving spread of each fastmmnfile of observable characteristics.
As y increases in a neighborhood of zéfathe moderate members of the faction become more
moderate—thalk's are negative for the first/4 faction members, all of whom haveés be-
low the faction’s median—while the extreme members becormeerextreme. Prop.18 below
establishes the following impacts of such a spread: if plEyeharacteristics are initially quite
homogeneous—specifically, contained in the intefval/4n, 1/4n)—the spread will reduce both
USW and APW. If the factions are initially quite polarizedpegifically, no player’s characteristic

belongs td—1/4n,1/4n|—the spread will increase USW (though not necessarily APW).

23Recall from p. 29 that playerbelongs to the right-wing (resp. left-wing) factiorkif > 0 (resp.k; < 0)
2%e need to keep close to zero to ensure that the perturbed vector ydk has the same propertieskfs
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Proposition 18 (Effect of a faction-mean-preserving spred of observable characteristics)
Let USWy) and APWYy) denote, respectively, equilibrium unbiased social andreggte private
welfare for the unique NMPE of the n player SQAG satisfyirguagption A8, whose right-wing

faction has the profile of observable characteriskcst ydk.

i) if maxk')<1/4n, then duﬁiyw‘y_o<o and  9APWYV|  _ g

dy y=0
i) if min(l?+)>1/4n, then duﬁi\\;\(y}‘ >0
y=0

To obtain intuition for this surprising result, we returnRkgure 3. Consider with k. < 0. In-
tuitively, the magnitude o¥ &, increases with the magnitude 16§ involuntary distortion triangle.
This triangle increases with the squarersflow threshhold typed,. HenceV¢;, is convex inr’s
threshhold type. On the other hand, in a symmetric game withifarm distribution over types,
r’s threshhold type is a concave functionrés expected deviation from affine. The curvature of

the convolution relatiny §; to k; depends on the balance between these two effects.

7. SNGLE BOUNDED GAMES
In many applications, itis natural to assume that the ancement space is bounded at one end but

not the other. The most obvious example is when announceraentestricted to be non-negative
but there is no natural upper bound. (For example, agentstro@reporting prices, interest rates
or the variances of some privately observed statistic.) &fferito games satisfying this condition
assingle-bounded aggregation gamesaturally, the upper bound on actions in a single-bounded
game should be infinite. However, to maintain consistendf tie framework laid out in 83, we
impose an artificial upper bound that will never bind. Sinaaf (15), no player’s equilibrium

announcement will exceet(maxk) +6 — a) + a, we impose in this section w.|.0.g:

Assumption A9: a=6=0, anda=n(maxk)-+6).

A9 implies that the announcement space of a single-bounalee gs inclusive, as well as:
A>0 = E&(A\)=0 (37)

In a single-bounded game, a key role is played by the playghose observable characteristic

exceeds that of any other player. Note that sifige = 0, k, is necessarily positive.

Proposition 19 (Single Bounded Games):Every single-bounded quadratic aggregation game
satisfying A1-A6,A9 has a unique MPE in whichA; > 0 and E£x(Af)) = 0. Moreover, for all
r #h,Af €int(A) implies B, (A;) = n(ky— k) > O.
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SinceE&n(A},) = 0, every single-bounded game is anchored, \Witts the anchor. While aggre-
gation games satisfying assumption A9 look and feel quiierdint from the symmetric games
studied in 86, the comparative statics properties we olitathis section and in 86 are remark-
ably similar, at least for games in which the spreacka$ small enough relative ta that an
NMPE exists?® The similarity of the properties they exhibit is an indiaatd the importance of
the dominant role played by the anchor. We begin by chatiastgrthe equilibrium of an arbi-
trary single-bounded game, then discuss its comparatiesproperties. To avoid repetition, no
formal results will be presented; we merely relate thespgnttes to the corresponding properties
derived in §6.

SinceE¢;, = 0, Prop. 7 implies that the equilibrium outcome implemdrg<CIPO outcome in ex-
pectation. Sinca= 0, EE, > 0 forr # himpliesA; < a— 8 =0. That is, every other player, even
including one whose observable characteristics is veryedoh’s, will under-report to counteract
h's extreme over-reporting. Indeed, from (L&nd Prop. 1£° SiAi =n(l—n)ky <O; i.e., when
n> 2, h's over-reporting is more than compensated by the sum offadirglayers’ (unconstrained)
under-reporting. Since player£ h is constrained by the lower bouragd his expected CIPO out-
come differs from the expected equilibrium outcome. FrompP19,r's expected deviation from

affineEg, = n(k, —k; ), is greater the more differenti% characteristic fronin's.

7.1. Effects of changing the number of players.The effects of increasingin a single-bounded
game are similar in most respects to the effects analyzeé.ih 8As in a symmetric games
expected deviation from affine is proportionalrte-in this case, ifA* is an equilibrium profile
thenE&, (A;) = n(ky — k) > O—whiler’s expected CIPO deviatioik, — k;) > 0, is independent
of n. The expression for's expected payoff is identical to the expression betweenetijuality
signs in (2%), except that thég’s are replaced byk, —kj)’s. The comparative statics of USW
and expected payoffs w.r.h are comparable to those summarized in Prop. 14. The onéngtrik

difference between symmetric and single-bounded gamesecas the strategic role played by

tis straightforward to identify conditions analogous 8samption A7(iii) guaranteeing existence of an NMPE. To
save space, we leave this as an exercise for the reader.

26Using (18) then Prop. 11, and then assumption A1(i), we obtain:
nkhk = SN+ YE&GN) = AN+ny(k—k) = SN+ k.
IZ i i; i(Ai .Z i i; .Z i
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the anchor player. A symmetric game is anchored by the middgerm, whose role is entirely
passive: regardless of who else is playing the gatjes 0. A single-bounded game is anchored
by playerh, whose strategy;, plays a pivotal equilibrating role. Far# h, r's expected CIPO
deviation is positive and independentrpfin spite of the fact that asincreases, each new player
contributes an additional downward bias to the mean reperir(£ h = A; < 0)! This balancing
act is accomplished single-handedlyywvhose positive bias offsets the sum of all other players’
negative biases. More precisely, from (13, = nk, — Yi-+h (E&i(Ai) +Aj); since each term in

the summation is negativiy, increases super-proportionally mgcreases.

7.2. Effects of changing the announcement boundSuppose the lower announcement bound,
a, decreases, holdirgjconstant at zero, ensuring that the announcement spacensaimzlusive.
The effects of this change are identical to those discuss86.R: each player’s strategy adjusts to
hold constant the first and second moments of his deviat@n &ffine; the equilibrium outcome

remains unchanged, as do all players’ expected payoffs.

7.3. Effects of increasing player heterogeneity.Once again, the effects here are qualitatively
similar to the effects described in 86.3-6.4. In the presemtext, we interpret an increase in
heterogeneity as an increase in all components of the gapndilc= (k, — ki)in. Such a change
unambiguously lowers all players’ expected payoffs and USMie proof closely parallels the
proof of Prop. 17. Again, it is more interesting to consider impact of a mean-preserving spread
of Ak. If we impose assumption A7 and I, 8] = [0, 1], the result we obtain is very similar to
Prop. 18: if the largest element AK is less than 14n, USW declines with a mean-preserving

spread of\k; if the smallest element is greater thafdt, USW increases.

8. LARGE AGGREGATION GAMES
The comparative statics results we present in 86 and 87 applg to games in which the num-

ber of players is sufficiently small relative to the spréfd., of observable characteristics that an
NMPE exists. Props. 2 and 3 reveal why for a given valugldf., there is an upper bound on
how many players can participate beyond which some plagttategies become degenerate: as

the population expands, the tug-of-war between players different biases becomes so intense
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that more and more of them are driven to the boundaries ottagegy space, resulting in increas-
ingly degenerate outcomes. Props. 20 and 21 below makediéasprecise, first for bi-bounded
games and then for single-bounded ones. In each case, werditnincrease without bound, and

demonstrate that in the limit, the outcome of the game ispeddent of players’ realized signals.

The driving force behind these results is rational exaggara Each player in our model wants
to distort the average signal that the center receives byraruat that is independent of But
asn increases, a single individual's leverage over the avedagénes, so that more exaggeration
is required in order to accomplish a given impact on the agggeeoutcome. When the space of
admissible reports is compact and sufficiently large, a right-winger, even if his type realiion

is close to the center, will be driven to the upper boundaryhef admissible report space in a
vain attempt to shift the mean announcement to the right.t iIBh@ompactness of the space of
admissible announcements bounds the extent that a playexeggerate: the best a right-winger
can do is to select the highest admissible announcemeatdiegs of his type. Once this bound is
reached, all connection between the player’s private smmahhis announcement is severed.rAs
gets larger, first extremists, then moderates, are pushidistoorner; increasingly, the boundary
values of the announcement space dominate the deternmradttbe mean signal, and the impact
of private information shrinks to zero. This result contsasharply with the recurring theme in
the information aggregation literature, which is that whkiggenumber of participants is very large,

political institutions such as elections can effectivaggeegate private information.

To formalize this argument we return from anchored gamelsé@éneral specification laid out in
83. We consider an sequence of games with an increasinglg farmber of players, but with a
fixed type-spac® C R, type densityh and announcement spade, We also fix a seK C int(A)
from which players’ observable characteristics are draMow for eachn, letk” = (k")I_; € K"

be a vector of observable characteristics satisfying apgamA1l and lef™ " denote then-player
aggregation game satisfying A1-A6 defined Ky Let v" denote the finite support measure on

. _ 1/n if k=K, for somen
K defined byk", i.e., fork € K, v"({k}) = . Lets" be an MPE for

0 otherwise
M and lett" : @" — R denote the equilibrium outcome function, i.e., e O", t"(u(0)) =

t(s"(@),k"). Passing to a subsequence if necessary, we can assumg.\whlat.the sequenda"}

converges weakly to a measweonK, and hence that = lim,t" exists.



-40-

We impose the restriction that thk&s do not “bunch up,” i.e.,
Assumption A10: For any sequenc@") in K s.t.¥n, diametefU") < 1/n, limp_»v"(U") = 0.

Assumption A10 implies that the limit measuwréis nonatomic. Although the results below hold
more generally, we streamline the exposition by assumiaigaiayers’ payoff functions are biased
guadratic loss functions (see (13)) and that the mean ofigmalsdistributionh is 0. Since by

the Strong Law of Large Numbers, the mean of players’ signé@g converges almost surely to

Es9 = 0 asnincreases, the limit of playets MPE payoffs is— (k. —t*(0))2.

The striking property of large aggregation games is thatmgdgtically, there is no causal link

between the mean of players’ signal and the limit outcoméhefgame. Specifically, Prop. 20
establishes that as— oo, the limit outcome*(-) is a constant functiof’ mapping all values of

1 (0) to the same convex combination of the lower and upper boieslaranda, of A.

Proposition 20 (Asymptotic information transmission):" If the sequence of observable charac-

teristicsk” satisfies assumption A10, then the limit outcoimeftthe sequence of gamég") is
defined byt(-) = k*, where K is defined implicitly by the condition*k=a—v*({k < k*})(a—a).

If the limit game is perfectly symmetric about zero—for exade) is the limit of SQAG’s—then
k* = 0 andv*({k < k*}) = 0.5; in this case, the limit game will, by happenstance, eiffett
aggregate private information and the limit solution wilarimize the limit of USW. In gen-
eral, however, the solution will be suboptimal, to a degled tepends on the asymmetry of the

distribution of observable characteristics and of the ameement bounds.

Prop. 20 is a straightforward consequence of parts iii) @phdfiProp. 2, which reflect the fact that
asnincreases, players must exaggerate more and more, to legesdme degree of influence over
the average outcome. But there are bounds on how much plegemxaggerate, and once these
bounds are attained, all connection between players’ arwesnents and their signals is broken. It
follows that asn increases, the fraction of players whose strategies cosmrgynformation at all
about their signals shrinks to zero. Because the limititistion over players’ observable char-
acteristics is non-atomic, the aggregation rule assignskiangly small weight to the information

that these few players provide.

27As noted, in the limitp (@) = 0 with probability one. Howevet; is definedor all 8 € ©.
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We now consider single-bounded games. The only changédediathe bi-bounded specification
above are that we relax the restrictions that theksistfixed and the mean signal is zero, imposing
instead assumption A9 for eaahso that in effect, the upper bound on admissible announctme
is removed. Prop. 20 was driven by the restriction that anoements were restricted to a fixed
compact interval. Surprisingly, Prop. 21 delivers a simi&sult, even though announcements are
bounded only from below. The difference between the twoltesithat in Prop. 20, the outcome
depended on the distribution of players’ biases. In Proptt#d playet with the largest positive
bias dominates the game for eacfcf. Prop. 19), obtaining in the limit the highest possitédg pff

of zero, implemented by the limit outcome functitn) = limy ki + Es9. As usual, we omit the
proof because it is so similar to that of Prop. 20.

Proposition 21 (Limit of equilibria in single-bounded games): Consider a sequence of games

(") satisfying assumption A9. If the sequence of observableacteaisticsk” satisfies assump-
tion A10, then the limit of the sequence of outcomesgtdy is t*(-) = limp k) + Es 9.

9. SUMMARY
This paper contributes to the literature on informationraggtion. Two features that distinguish

it from the mainstream of this literature is that playergads are aggregated by averaging rather
than majority rule, and their strategy set is an intervdieathan a binary choice. In this context,
the bounds on the strategy set play a critical role: if a grofuplayers have distinct preferences,
then all but at most one of them will be constrained by the ldgusmith positive probability. Our
main general results are: if agents have identical preb@gnnformation is perfectly transmitted,
regardless of; if there is any degree of preference heterogeneity, howvevivate information
is entirely obliterated as approaches infinity. For games with a small number of playees
establish a number of comparative statics results for & dbgames with quadratic payoffs which
we call anchored games: equilibrium outcomes and playengoffs are independent of the size
of the strategy set; asincreases, payoffs and social welfare tend to decline, buhecessarily
monotonically; a mean-preserving increase in the hetex@igyeof players’ payoffs reduces payoffs
and welfare, but if the player set is split into two symmefdctions, then an increase in the

heterogeneity of each faction will under some conditiomsaase payoffs and welfare.
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APPENDIX: PROOFS

Proof of Proposition 1:  To prove the proposition we apply Theorems 1 and 2 of Athe@120
The first of these theorems is used to establish existendaf-action aggregation games. The
second implies existence for general aggregation gamespfly Athey'’s first theorem, we define
afinite action aggregation gam® be one in which players are restricted to choose actiams fr

a finite subset oA. In all other respects, finite action aggregation gamesdsetical to (infinite
action) aggregation games. We now check thattisfies Athey’s Assumption Al. Clearly, our
types have joint density w.r.t. Lebesgue measure which usitéed and atomless. Moreover, the
integrability condition in Athey’s Al is trivially satisfebsinceu is bounded. Moreover, inequality
(7) implies that the SCC holds. Therefore, every finite acggregation game has an MPE in
which playerr’s equilibrium strategys: is nondecreasing. By Athey’s Theorem 2, the restricted

game has an MPE, calldt. To show thas* will also be an equilibrium for the original, unrestricted

game, it suffices to show that for all all 6 and alla > a, % < 0. To establish this, note

thats*, >s_, > 0, so that sinceis strictly increasinga > aimplies

Ul(abis’y) < Ul(@ds’) < Ufabs, < U(a60 < 0

Finally, to establish thad is strictly increasing and continuously differentiable @n(s), 6], note

thatU/(s:(+),-;s—r) = 0 on(6,(s),B]. From (7), assumption A6 and the implicit function theorem,

we have, fOI’ aIB c (Qr(s),é], % — _ aZUr(%égge;S—r)/ 62Ur(5ra(22)79§sfr) > O. -

Proof of Proposition 2:  Lets be an MPE and assume that-k; > € > 0. Pick6* € ©" =
argmin(s —s;j) and lety=5(8*) —sj(6%), so thats(-) —y > sj(-). Thus,yis the minimum amount
by whichs(-) exceeds;(-); we will establishy > 0. Note first that

Uj(sj(67),6%sj) = Uj(s(0) -V, 0% (s,s-ij) = Uj(si(67),8% (s —v.s-i))
< Ui(s(89),0%(s—vs-ij) < Ul(s(67),8%(sjs-ij)  (38)

The first equality merely relabels some terms; the secondliggtold because the outcome func-
tion satisfies condition (3). The strict inequality holdschese by assumption A5(iik; < ki

implies thatUj’ < U/. The weak inequality holds becaudgis concave w.r.ts_; (display (6)) and
S(-) —y>sj(+). It now follows from (38) that iU (s (8"),8%;s_i) <0, thenU;(sj(8"),0%s_;) <
0, implying thats;j(6*) = a, while if U/(5(06%),6%;s_i) > 0, thens(6*) = a. In either case,
S(6*) —sj(6*) > 0. Hence, by definition o8*,

0 < s(6)-51(6) < s()—si(), (39)

i.e.,i’s strategy is never lower thays strategy. Thus;(6) > aimpliess(6) > a, implying in turn
Bi(s) > Bj(s); ands(B) < aimpliess;(0) < a, implying in turnBj(s) < Bi(s), proving part i). To
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prove part i), note that fo@ < (8;(s),8i(s)),

U/(s(8),6;(sj;s-ij)) = 0 = Uj(sj(8),8;(s,s-ij))
< U{(si(8),8;(sj,s-ij) < U{(si(8),8;(sj,;s-ij)  (40)

The equalities hold because neitheror j is constrained at typ8. The weak inequality follows
from property (6) since, from (39% > sj, and the strict inequality is implied by A5(ii). The
inequality between the first and last expressions of (40)]t['med with (6), imply thats (0) >

Sj(0), proving part ii). To prove part iii), note first that sm%k, Fone) > 0 >3 2 (assump-
tions A5 and A6), sinceis bounded and the domainwfs compact, there emsﬁsooe wa > 0 such

2u(. ..
that ax(ak) > 29, %T%(u( )) wp and % ”E E 5) € (—wa,0), so that for alln, aT(ae) = n_lzgx%(uké)) <

wg/N? while a(aZ o) = n_lzaa;uéa)z) € (—wa/n?,0). Now fix 8 € (8j(s),8j(s)) so thatj’s first order

condition is satisfied with equality & From the strict inequality in (40), the lower bound on

° gT(ak ) and the fact thatk; — kj > €), we can infer that

Ui(sj(8).6;(sj,s_ij)) > 2ed/n. (41)

max{(a—a)wa,(0—0)wg}
€0 !

Moreover, using the bounds just identified, we have thahfor

U/ (s(0),8; (sj,s-i,j)) — U/(@;(sj,s-i,;))

B /a_ dUi/((X, é, <Sj 7S—i7j>) dCX
Sj(é) da

< @ < €d/n (42)
while  U/@8i(ss ) - U@ (ss ) = [ Tt
< “’9(22 9 < &n @3

Inequalities (42) and (43) together imply thi(s;(8),6; (sj,s_i j)) —U/(&8; (sj,s_ij)) < 2£3/n,
which, together with (41), implies th&¥'(a, 6; (sj,s—i J>) > 0. It now follows from (8) and mono-
tonicity of 5(+) thata= 5(8) < s(-), establishing part iii). The proof of iv) is parallel. [

Proof of Proposition 5:  We first assume thatis admissible and unit affine but not ZSUA, i.e.,
that there existd € A? such thass:(-) = 1(-) + Ar, with riiAr # 0. Assume w.l.0.g. that; > 0 and
thatja— 8] > |a— 6|, implying that—A; € A. Fix 0; arbitrarily:

Uj(sj(8)),8j;s) = /@U(t(ﬁiﬂ\iﬁj+?\j),(3i,91),_)dh(3i)
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which, since is CISE

< /@u(twi,ej),(si,ej), )dh(®i) = Uj(8;—\;,6;s)

That is,s;j(-) is not a best response agaigsto that is not an equilibrium profile.

Now assume that is continuous but not unit affine. (From Prop. 1, we do not nieecbnsider
discontinuous strategies.) Note also that foand g continuous,f 2 g implies that f strictly
exceedsy with positive probability. W.l.0.g., assume that thereséxA > 0 such thats;(- )

t(-) —A, with s;(8;) = 6; —A. We now show that i§ is a best response $p, then(si(-) —1(-)) <
Considers such that (6;) > 9.+)\ for some#;, , o thats (6;) +si(-) > 6i +A+sj(-) 2 6 +1(- )
Fact (5) on p. 13 now impliegs (6i),s;(-)) Zt(_ﬂ. +A,si(-)) 2 t(65,1(+)). SinceU; is concave irt
and, for alle;, u(-, (6;,8;),k) is maximized at(6;,6;) = p(6,9;):

Ul(5(80,815) = [ So(t(s(8),5,(9)), 89, Kan®) < [ Sit(@+2,5i(9,), 89, K1dh(s)

[ H8,9)).(8,9;),Kdhs) = 0

This establishes that § is a best response 8, then(si(-) —1(-)) < A. But in this cases; (51-) +
S(-) <Oj+1(-), implying thatt(sj(6j),s(-)) < t(8j,1(-)), sothatj(sj(6;),6;;s) > 0. Therefore,
sj(-) is not a best response fpiagainsts(-) at ;. |
Proof of Proposition 6:  We will prove uniqueness only for non-degenerate equiitrprofiles.
Uniqueness for other profiles is ensured by restriction, () we omit the details. LeX* be a

NMPE for the aggregation game, and dbe any other profile of strategies such that for some
i Aj # )\* We will show that ifA satisfies the necessary condition (22), then it fails thermth

necessary condition (15 Suppose w.l.o.g. thatj > Aj. From (21),E&j(Aj) < E&j(A}). Forall

r #j, (22) implies tha€g; (A;) < E&;(A;), and (21) in turn implies that, > A;. To establlsh that
A cannot satisfy (19, it suffices to show that

(ZM%E%(M) > (IZAH%EEa(?\?)) — kg

or, equivalently
Aj —Aj + ;O\i -N) > ;(Eﬁi()\i*) — E&i(N))
i#] i#]
This last inequality is indeed satisfied, since by assumptja> A} while (21) implies that for all
i # J, A\ — A > E&(A) —E&(N). [

Proof of Proposition 7:  From (17),Eg (U(s*(8)) — u(®)) equalsu(A*) + p(EE), which, from
(15), equalsk + E&,/n. Hence, from (23)Es (U(s*(8)) —{(9,k/)) = EE:/n. [ |



Proof of Proposition 8:  Rearranging (15), we obtain tleterim expected equilibrium outcome

Es . (u(s)|6,) = <min{5,max{9r+)\r,a}} + nk,-i—;Eaﬁi—)\r)/n

It follows that for (r,6;), the interim expected equilibrium and CIPO outcomes wilhcale iff
min{a, max{6, +Ar,a}} =6, + A, i.e.,(r,6;), is not constrained by the announcement boults.

Proof of Proposition 9:  Let§; =§&,(A/). Expanding the left hand side of (25), we obtain

Es(M®)+k —K(S"3)))? = Es(H(E"®) —u®) k)

U(®))? — 2k (L(EE") +u)) + K (44)

The last equality follows from (20). Expanding the first tesmthe right hand side of (44),

I
g
=
—
(%)

*

—

<

Nt
|

Es (U(s"(8)) —n(®))? = Ea(u<§*<ﬂ>—v<s+x*g)+u<x*>)2
x
—  Es(H(s'(®) — @ +A)))° + 24N )R (EE) + p(A")? (45)

The first equality merely adds and subtrgeth*) and rearranges terms; the second averages both

sides of the identity in (17). Now expand the first term in (&bdbtain

B (W' ®) - 0+N)" = (Y En (5 00— @ +A) + 3 3 EEEE]) /P
= (JVE + S (EE)+ Yy EEHEE) /M = (IVE + [TEE])
= R(VE) /n + (u(EEY))? (46)

The first equality is obtained by expandipg® +A* —s*(8)), the second from the relationship
E(X?) = Var(X) + (EX)? for a random variabl&X. Now, substituting (46) back into (45)

Es (W(s*(®) —p®)® = u(VE)/n+ (L(EE") +rA"))° (47)

Finally, substitute (47) back into (44) to obtain

Es (W) +k — (" (9))° = H(VE") /n + (M(EE") + M) —k)* = W(VE") /n + (EE/n)?

The last equality is obtained by addi&g; /n to both sides of (1) and substituting fok;. [ |

Proof of Proposition 12:  We first show that under A7, for the variancerds deviation from

affine isVE, (Ar) = EE?( ﬁ - 1). To see this, assuming w.l.0.g. that> 0, and using the
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fact thath; € int(A), we have

0 _ 3
VEGO) = —E& + [ (9c+A-a%dnd) = h/3(\+8-a) ~EE&  (48)

a—Ar

which, from (29),

h/2_ . \¥2 ) 8|EE, |3 ) ) 8
= é (HEEr) - EEr = 9h - EEr = EEr 9h‘EEr‘ -1].

Prop. 9 now implies thats equilibrium expected payoff is {Zi [EE? (, /ﬁ -1 } +(EEr)2}/n2.
Equation (30) then follows from Prop.11. The inequalityldals since|kj —ki| < 2||k||o <
(6—8)/2n=1/(2hn). ]

Proof of Proposition 13: The existence of a unique MPE was established in Prop. 6. &ond
generacy is implied by assumption A7(iii) (see pp. 28-29n€ide\* such tha€g, (A)) = —nk

for all r with A; € int(A) and parts i) and ii) of the proposition are satisfied. Our swtmyncon-
ditions ensure that such a vector exists, i.e., thatifidr are matched players, Mf = —Af, and
E&r(Ar) = —nk, it follows from symmetry, (17) and (18) th&gr (Af) = —nkr. With the restric-

tions in (16), we only need to verify that (33s satisfied byA*. Sincey;k =0 (assumption A1),
we have

—nk = Snk = -—YE&QA) (49)
i£r i1

Moreover, from parts i) and ii) of the propositioRy; A;' = 0. Substituting this property and (49)
into the right hand side of (1 we obtain

SA + YEEQN) = nk,
I i#r

verifying that (15) is indeed satisfied. |
Proof of Proposition 15:  From Prop. 13, we have

o 6 _
E5, = /Q(—a—(6r+)\r))dH(6r)+/§r(a—(6r+)\r))dH(6r) — _nk, (50)

where in the first integration we substituteddn= —a. Totally differentiating both sides with

respect ta andA; and noting tha, =a— A, = —a— A, and®, = a— A, we obtain

H@) - (1-HE)| + () +a-HE)| G - O

(1-H(®)—H(8r)

= R TR Whenr is bi-constrainedt (6;) andH (8;) are both nonzero, so that

%Aa—' € (0,1). Whenr is up-constrained (resp. down-constrainéti)g;) = 0 (resp.H(8;) = 1), so
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that%"gr reduces~ to 1 (resp. -1). fifis the middle player\; = 0 and, since everything is symmetric,
H(8r) =1—H(&) so that®x = 0. |

Proof of Proposition 16:  Since part i) of the proposition follows immediately fronethis-
cussion below Prop. 15, we need only prove in detail partS)ppose there is a playewhose
strategy is bi-constrained. (lis not the middle player, his matched player is also bi-aairs¢d.)
We will show that as increases bya, the variance tera &; decreases, which, from (33nduces

the same increase efn—lz %da in the expected payoff of each player. Let the distributionck

tion of playeri’s deviation from affine§;, be denoted a(-). ObviouslyF(-) is derived from the
distribution function o6, H(-), as well as froni’s strategy and the announcement bounds. The
random variabl&; can be considered as a function of random varifple

(

a—(6i+A) = 6-6 if6 <6

g = {o if 8 < 6 <8 (51)
a—(6+A) = éi—ﬂi if 6 > 6
\

Given thatd; is distributed according tbi(-), the distribution functiorf(-) of &; can be derived
by combiningH(-) and (51). Specifically, the support &f is [6; —6,6; — 8]; the fact that is

bi-constrained implies thﬁ; — 6 < 0andg; — 6 > 0; The values of; are given by

(

Prob(6 — 6; <x) = 1—H(B; —x) xe [6;—9,0)
F(x) = Prob(6; > 8,) =1—H(§) if x=0 (52)
Prob6 —6; <x) =1—H (6 —x) x e (0,6, — 9.

Note in particular thak () jumps up ak = 0 from 1— H(8;) to 1—H(8;). To derive the variance

V&;, note first that since is bi-constrained); € int(A). We can therefore invoke Prop. 13 to
obtain:

8i—8 8i—8
k= E@) = [ _&dRE) - 6-0- [ “R()dE,
where the last equality is obtained after integrating bygdarhus,
8 -6
L REdE = 8i—8+nk. (53)

The variance o&; can now be written as

6i—6 0
V& = /éi—é (& —E(&))%dR(&) = (6 —8—-E(&))* - /é‘ F(&)2(& —E(&))d¢E;
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0 9 06;—6
—(B-0+nk)? — ZnK/ g)dE - 2/é~eﬁ(ai>zidzi

— (8-0)2+2(8i—O)nk+(nk)2  — 2nk(8—0-+nk) - 2/:: F(8)EdE;

=<@i—@>2—<nk>2—2[/fe<1 H(E - &) zda.+/e Ca-He, a>>zd5.}, (54)

where the second equality follows from integration by pattte third fromE(§;) = —nk;, the
fourth from (53) and the fifth from (52). Now, differentiagji{54) with respect ta and noting that

B =a—Aj = —a— A and6; = a— A, we obtain

i g 2{{1—%]/ h(B - &)&dE - [“%M (Qi—zi)adzi}

4 /
© HE)+(A-HE) o

_ de;
The first inequality holds becaust(8) = 0 andH (6) = 1, while ¢z = d(&d;)‘) = (1+ ) and
%';-i = ﬁgg“—) =(1- %). The second equality is obtained by substituting in theevaldA; /da

using (33), changing the variables of integration frg§nto 6; = 0 — & and toB; = 6; —¢&; in the

two integrations respectively. The term in curly brackstsegative becauge< 6 while 6 > 0.m

Proof of Proposition 17: By symmetry, we can, w.l.0.g., assume tkat> 0. Similar to the
procedures used to derive (R4ve differentiate the expression fgg; in (54) w.r.t. A, to obtain

VE, )
a;r —2/ —8,)dH(8)) +2/ _8,)dH(6,) = —2E¢, — 2nk, (55)

where the last equality follows from Prop. 13. Note that i§ up-constrained, the first term in

expression (55) is zero. Sinégr = Gt + Z&r e the Proposition is obtained by taking the
derivative of (54) with respect tig and comblnlng (35) with (55). |

Proof of Proposition 18:  Let|* denote the members of the right-wing faction and fetlenote

the moderate members of this faction. Pick | *. Let &, (y) denoter’s deviation from affine in
the equilibrium associated with the parameate®incer is up-bounded, we have

1

n@ = -E&(0) = /;(er—ér)dH(er) = 05 5 (er—éf)de - (1_éf)2/4
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The first equality follows from Prop. 13 and the third from @sption A8(i). Henced, = 1—
2v/nki". MoreoverH (8,) = O.5ff’ de = 1+ef . Now from (36)

dVv§, _ 2n2Ef+ (LérZ) _ ZnZEr_,_ (1—1—_@) _ 2n2Er+ 1— /nkr+
dk ly=o 1-H(8) 1-6; N
= 2n(v/nk —nk)
Hence! dk(z (f/v ki — 2n> < 0ask = 1/4n. Thatis, fork > k, &) - dVer(k) j¢

< 1/4n and dVEr(k/) dVSL() if k> 1/4n. From Prop.10, Prop.13 and symmetry,
USW ZZ,E|+VE( Y), so that
v=0>

dUSwW 25 dVEi(y)
Slncelgm/4 >k, deow o 0if min(k") > 1/4n and 4USW v ,<Oif maxk ) <1/4n. W

dy

S a_(dvzi+n/4(v>' dVE&(Y)
el dk+ﬂ/4 y=0 dk

y=0 & Ay o

Proof of Proposition 19:  We first establisfA/; > 0, so that, from (37)E&n(Af;) = 0 and thush
is the anchor of the game. Suppose insteadihat 0 andA}, € int(A). (We can easily rule out the
situation wher\: = min(A) = a— 8; we omit the details.) Sinde, > k: Vr # h, (22) implies that
EEn(A}) < E& (A7) and thus\; < Af < 0. SinceEE;(Ar) = 0 whenA, =0, (21) and\; < 0 imply

AN+HEE(N) < O (56)

From (18) andAj, € int(A), Ay, = nky — 3 2n(A7 +E& (A7) > 0, where the inequality is due to
kn > 0 and (56). This contradicts our supposition that< 0. Property (37) now ensures that

E& (Ar) = 0, so that single-bounded aggregation games are anchotieéndghorh. The second
part of the proposition now follows from Prop. 11. [ |

Proof of Proposition 20:  Let s" denote the MPE of the'th game and leU" = {k € K :
Jr s.t. k' =k ands(-) = a}. Define U' analogously, wittareplacinga. Finally LetU" = {k €K :
Jr s.t. K" = k andg is non-degeneraje From parts iii) and iv) of Prop. 2, ligdiametefU") = 0.
From assumption A10, ligv"(U") = v*(lim,U") = 0. Moreover, sinc&k C int(A), bothU"
and _U' must be nonempty for sufficiently large since otherwise, if say U= 0, thent"(.) ~
a> sup(K), which would be superoptimal for all players. Hence, siricategies are monotone
w.rt. observable characteristics (Prop. R} = liminf(U") > k'P = limsup(U"). Moreover,
sincev*(limaUM) =0, 3k* s.t.t*(-) = k* = v*({k < k*P})a+v* ({k > K"} )a Necessarilyk* €
[kSUP, KiI"*], since if ¥UP> k* there would fomn sufficiently large exist with t"(- )~k" <k'eU", so
thatr’s payoff would increase by shifting fromto a, a contradiction sincs” is an MPE. Flnally,
sincek* € [KSP, K] andv*((kSP k")) = 0,t*(-) = k* = v* ({k< k*})a+v*({k>k})a ®
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