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Abstract

The United States Energy Information Agency publishes annual forecasts of na-

tionally aggregated energy consumption, production, prices, energy intensity and

GDP. These government issued forecasts often serve as reference cases in the cali-

bration of simulation and econometric models which climate and energy policy are

based on. This note shows that under the assumption of a class of symmetric loss

functions some EIA forecasts are not rational. If we extend the class of loss func-

tions considered for these series to asymmetric ones, we show that most observed

forecasts are rational. Using this framework we provide evidence that the consistent

underprediction of energy intensity is not due to an asymmetric loss function over

energy intensity, but rather GDP.

∗This is a very preliminary draft. Do not cite. I would like to thank Alan Sanstad for pointing out the
dataset and extensive discussions. Jennifer Alix provided valuable research assistance. I am grateful for
financial support from the UC Berkeley Committee on Research. All errors in this note are mine.
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1. Introduction

Since the quest for the crystal ball has proven to be a hopeless endeavor, forecasting of

random sequences has become increasingly important in economics. Forecasts of i.e. as-

set returns are used by investors to make portfolio decisions. Point and density forecasts

of macroeconomic variables are used by government and central bank decision makers to

determine optimal intervention (e.g. the Bank of England uses inflation forecasts to guide

monetary policy). Recently forecasts have taken on a central role in the debate surround-

ing global climate change. The Intergovernmental Panel on Climate Change (2000) has

published a volume called the Special Report on Emission Scenarios, which provides fore-

casts of global greenhouse gas emissions by geographic regions. These forecasts are used as

benchmarks to estimate the future costs of regulating the emissions of greenhouse gases.

The IPCC forecasts are constructed assuming no policy intervention.

The withdrawal of the United States from the Kyoto Protocol in 2001 has put into

question the future success of the climate treaty. President George W. Bush has cited

extensive costs of meeting the encoded reductions and the comparative advantage of de-

veloping countries due to their exemption from cutbacks as the main reasons for current

US non-participation. This puts the evolution of factors, which decrease the costs of

meeting reductions at the center of the debate. Invoking the traditional IPAT (Impact

= Population · Affluence · Technology) identity (Ehrlich and Holdren, 1971), it is argued

that emissions are decreasing in technological progress. A frequently invoked indicator of

technological progress is the energy intensity of an economy. As shown in figure 1, energy

intensity for the United States has decreased almost monotonically since 1949. Future

drops in energy intensity, ceteris paribus, will partially determine the magnitude of addi-

tional measures and related costs necessary to decrease carbon emissions. Expectations of

future drops in this ratio are therefore closely tied to expected costs of regulation.

For the United States, the Energy Information Agency (EIA) annually publishes fore-

casts of energy consumption, production and prices. Recently these forecasts have included

energy intensity of the economy in British Thermal Units per US$ of GDP. These are pro-

vided since ”the EIA has seen more public interest in energy intensity, particularly as

public policy issues such as carbon dioxide emissions, technological development, impacts

of structural changes on the economy, and national energy security, are more openly dis-

cussed and evaluated” (Energy Information Agency, 2004). The energy intensity forecasts

are thought to reflect government expectations and are used directly or indirectly by mod-

elers. The EIA forecasts are used both for the calibration of economic simulation models
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Figure 1: Energy Intensity in BTU per US$ of GDP (1949=1)
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and for benchmarking engineering-based energy scenario analyses (Sands, 2004; Interlabo-

ratory Working Group on Energy-Efficient and Low-Carbon Technologies, 2000). Reduced

form econometric models, such as Yang and Schneider (1998) use energy intensity trends as

”right hand side” variables to forecast emissions. Finally, these quasi official EIA forecasts,

including the predictions of production, consumption, prices, imports, and GDP are fre-

quently cited as benchmarks to provide direct comparability of model performance, since

they are issued by a US government agency. This makes assessing their quality important.

It is the task of the forecaster to evaluate how well the employed forecasting model

performed once the realization of the series in question is observed. The forecasting model

is constructed or revised according to the cost from erroneous forecasting. The forecaster’s

cost of over- and underpredictions is summarized in a loss function, which is used to assess

forecast performance of the particular forecasting model. Traditionally used loss func-

tions are Mean Square Forecast Error (MSFE) or Mean Absolute Forecast Error (MAFE)

Loss. Under the most frequently used MSFE class of loss functions, testing for rationality

amounts to testing for mean zero forecast errors and no serial correlation in the forecast

errors beyond the prediction horizon. As Granger and Newbold (1986) point out, the

assumption of a symmetric cost function is not reasonable in all settings, since in many

circumstances overpredictions are considered to be more costly than underpredictions and

vice versa. A classic example is forecasts of a firm’s sales, where overpredictions lead to
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buildup of inventory and underpredictions of sales may lead to a potentially very costly

loss of business and damages in reputation.

It is the purpose of this note to evaluate the forecasts published by the EIA. Specifi-

cally we will test whether the forecasts are rational given a traditional class of symmetric

loss functions. In cases where we reject the notion of rationality under symmetric loss, we

extend the class of considered loss functions to include lin-lin and quad-quad asymmetric

loss. Instead of assuming a specific asymmetry of the loss function, we will employ the

Generalized Method of Moments estimator proposed by Elliott, Komunjer and Timmer-

mann (2004) to back out an asymmetry parameter given a class of loss functions, which

is consistent with the observed forecasts being rational. This note is not a critique of

the EIA’s forecasting methodology, but an attempt to understand the loss function of its

forecasters. Although we are mostly interested in the forecasts of energy intensity, we pro-

vide estimates of asymmetry and test results for all forecast series provided by the EIA.

The next section provides background information and describes the estimator. Section 3

presents data and results. Section 4 concludes.

2. Asymmetric Loss and Forecast Rationality

The goal of the forecaster is to predict the realization of Yt, the variable of interest, τ

periods from now, which we denote Yt+τ . We call τ the forecasting horizon. At time t the

forecaster constructs his/her forecast of Yt+τ conditional on the information set =t which

we will denote ft+τ . The forecaster only observes the forecast error εt+τ = Yt+τ − ft+τ

at time t + τ . For the purposes of this note we will limit ourselves to the case where

τ = 1, 2. When the forecaster constructs his rational forecast of Yt his objective is to

minimize the cost of forecast error. This cost of over/under prediction is summarized in a

loss function, which is defined over forecast error and denoted by L(εt+τ , ψ), where ψ is a

vector of parameters governing the shape of the loss function. The overwhelming majority

of traditionally used loss functions are symmetric, such as the mean square forecast error

cost function or the mean absolute deviation forecast error cost function. Patton and

Timmermann (2004) show that under a squared error loss function L(εt+τ , ψ) = ψ (εt+τ )
2,

where the scalar ψ > 0, the rational forecast of Yt+τ is Et[Yt+τ ], the rational forecast

error is unbiased and the forecast error does not exhibit any serial correlation beyond lag

τ . These properties of rational forecasts rely on the assumption of this most frequently

used loss function. Testing for forecast rationality under MSFE Loss can be achieved by
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Figure 2: EIA Energy Intensity Forecasts (1985=1)
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testing for a zero intercept and unity slope in a Mincer and Zarnowitz (1969) regression

of Yt+τ = α + βft+τ + εt+τ .

MSFE and MAEF loss functions imply that a one unit positive forecast error is as

costly as a one unit negative forecast error. If we relax the symmetry assumption, these

properties of rational forecasts no longer hold. Under asymmetric loss, it is likely to be

rational to observe non-zero mean forecasts errors.

Figure 2 shows the one step ahead forecasts and forecast errors for the energy intensity

series. Upon casual inspection the forecast errors do not look like they are rational under

symmetric loss (mean zero and serially uncorrelated). The energy intensity series are over

predicted at the one period forecast horizon for all years except for the year 2000.

Elliott et al. (2004) make use of the information contained in a sequence of observed

forecasts and the realization of the series to estimate an asymmetry parameter governing

the shape of the loss function of the forecaster consistent with the observed forecasts being

rational. They further provide a joint J-test of forecast rationality conditional on a given

asymmetry of the loss function. The class of loss functions they consider is restricted to

the family:

L(p, α, θ) ≡ [α + (1− 2α) · 1(Yt+τ − ft+τ (θ) < 0)] |Yt+τ − ft+τ (θ)|p (1)

where α ε (0, 1) is the parameter governing the relative cost of over versus underpre-
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diction, which we will refer to as the asymmetry parameter and will be the goal of our

estimation. p in theory can be any positive integer, but we will restrict it to be either

one (lin-lin loss) or two (quad-quad loss). The underlying forecasting model does not need

to be known, but is restricted to the type ft+τ = θWt, where Wt is a set of variables

observed by the forecaster at time t thought to help forecast Yt.
1 The forecaster solves the

minimization problem:

min
θ

E [L(po, αo, θ)] (2)

where po and αo are the true values observed by the forecaster only. Assuming this class of

loss functions and optimizing behavior on behalf of the forecaster gives rise the following

moment condition(s), which have to hold for forecast rationality:

E[Vt(1(Yt+τ − ft+τ (θ) < 0)− αo)]|Yt+τ − ft+τ (θ)|po−1 = 0 (3)

Vt is a k×1 observed vector and a subset of the Wt. The estimation strategy is to assume a

value of po ε (0, 1) and αo = 0.5. We will test whether the k moment conditions above hold.

If they do not, we assume a value of po and estimate α̂. For overidentified cases, where

the number of moment conditions is greater than the number of estimated parameters,

we apply the Elliott et al. (2004) J-Test for overidentification, which allows for the joint

test of rationality under a given loss function. Assuming symmetric loss and a value for p

allows application if this test for any k. Under asymmetric loss, this test only applies for

this class of loss functions if k > 1.

3. Data and Results

The Energy Information Agency in their publication ”Annual Energy Outlook” publishes

forecasts for the 17 series listed in table 3. The publication appears in January of each year

and includes forecasts for the anticipated value of each series by the end of the calendar

year, as well as annual forecasts for each year up to 22 years into the future.2 The first

1Elliott et al. (2004) do not assume that the model is correctly specified. Further, the linearity as-
sumption is not crucial to the estimation procedure. It is a strong assumption implicit in our analysis,
that the NEMS forecasting model employed by the EIA can be approximated by this class of models.

2Over the history of the publication the forecasting horizon has gradually grown. The Annual Energy
Outlook in 1982 included forecasts of up to 8 years, which was extended to 15 years in 1986 and finally 22
years in 1998. It would be interesting to evaluate forecast rationality for short versus long range forecasts,
yet the data do not support this at the current time.
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Table 1: EIA Annual Energy Outlook Forecast Series

Code EIA Series Title
ENC Total Energy Consumption
PEC Total Petroleum Consumption
NGC Total Natural Gas Consumption
COC Total Coal Consumption
ELS Total Electricity Sales
OIP Crude Oil Production
NGP Natural Gas Production
COP Coal Production
PEI Net Petroleum Imports
NGI Net Natural Gas Imports
OI$ World Oil Prices
NG$ Natural Gas Wellhead Prices
CO$ Coal Prices to Electric Generating Plants
EL$ Average Electricity Prices
GDP Gross Domestic Product
CO2 Total Carbon Dioxide Emissions
ENI Energy Intensity

available year of these forecasts is 1982, although the only forecasts available for that year

start at the 3 year ahead horizon. We have a consistent series of same year forecasts

from 1985 until 2003. True one step ahead forecasts are available for the same period.

This means that we have 18 usable observations for the end of year series and 17 usable

observations for the true one step ahead forecasts. We do observe the level forecast and

the realization of the series, which allows us to calculate the forecast error. These samples

are admittedly very small, and the results should be interpreted keeping the shortness of

the series in mind.3 Further, the first Carbon Dioxide forecasts were published in 1992,

which does not provide us with a sufficient sample size to test for rationality on this rather

important series. Overall, this is the best data set the authors are aware of in the energy

context. It would be desirable to conduct this exercise on IPCC forecasts of Carbon

Emissions, yet unfortunately there are only two sets of forecasts available and an update

will not be available until the fifth assessment report, which is likely to be published only

in another decade.

Due to the brevity of the series we only consider τ = 1, 2, for the same year and next

3Elliott et al. (2004) use government forecasts of budget deficits as their empirical application, for
which they have 25 observations. Clearly applications in finance allow for much larger samples.
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year forecasts respectively. In order to apply the method proposed by Elliott et al. (2004),

we require Yt to be a stationary series. We apply a series of tests for stationarity around

a deterministic trend, using the Elliott, Rothenberg and Stock (1996) (ERS) procedure,

which has better power properties than the test proposed by Dickey and Fuller (1979). It

has been shown that tests using the null of a non-stationary process tend to fail to reject

the null too frequently. If the p-value of the test statistic for the ERS test is less than

0.3, we apply the Kwiatkowski, Phillips and Schmidt (1992) test, which poses a stationary

series as the null. If we fail to reject the null for the KPS test, we break in favor of the

KPP result. For series, which are stationary around a deterministic trend, we detrend the

series and forecasts based on information available up to 1985. Following this procedure,

we cannot conclude that NGC, NGP and OIP are stationary series. We report the results

for all series for completeness. Forecast errors in the estimation are realizations minus the

calculated forecast. In the case of energy intensity, a positive forecast error is therefore an

over prediction of the variable, which implies that the energy intensity of the economy has

fallen by more than expected.

In the empirical test of forecast rationality we assume that po = 1, which is a lin-lin

loss function and a good approximation for a large class of asymmetric loss function. We

follow Elliott et al. (2004) and report results for po = 2, which is a quad-quad loss function.

We use four different combinations of instruments for the Vt: an intercept; an intercept

and the lagged forecast error; an intercept and Yt−1; and an intercept, the lagged forecast

error and Yt−1.

The top panel of table 2 reports the estimated asymmetry parameter α̂, assuming

rationality and lin-lin loss for the same year forecasts. The bottom panel reports the

parameters for the true one year ahead forecasts. The standard errors are reported in

brackets under the estimates for α̂. For the same year forecasts, we reject the null of

symmetric loss for Net Gas Imports, Coal Prices, Electricity Prices, GDP and Energy

Intensity. This is true irrespective of what combination of instruments are used. The

parameter estimates on Coal Consumption, Electricity Sales and Petroleum Imports are

closer to zero than they are to 0.5, yet not statistically different from 0.5. For the true one

year ahead forecasts Net Gas Imports, Coal Prices, Electricity Prices, GDP and Energy

Intensity we again reject the null hypothesis of symmetric lin-lin loss. Table 2 displays the

parameter estimates under nonlinear quad-quad loss, under which large errors are generally

more costly than small errors. The results from lin-lin loss are echoed in the results for

quad-quad loss. The same series show statistically significant evidence of asymmetric loss.
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Figure 3: Estimated Loss Functions for Energy Intensity

−10 −5 0 5 10
0

2

4

6

8

10
L = Lin−Lin

ε

k=1
k=2
k=3
k=4

−10 −5 0 5 10
0

20

40

60

80

100
L = Quad−Quad

ε

k=1
k=2
k=3
k=4

For energy intensity (ENI) the asymmetry parameter is very close to one, suggesting that

positive errors are considered much less costly than negative forecast errors. The parameter

is significantly different from 0.5 at the 1% level in all estimations. This is consistent across

loss functions and instruments considered. Figure 3 displays the estimated loss function

over energy intensity forecasts for lin-lin and quad-quad loss for the four instruments used.

This visualization demonstrates nicely the implicit extreme cost of underprediciting the

future energy intensity of the economy. Since α̂ is at the boundary of the space for some

scenarios, this leads us to believe that in the most conservative estimate the EIA finds

overpredictions seven times more costly than underpredictions of energy intensity. At the

upper end the ratio is roughly 400.4

Although the above results provide some evidence of asymmetric loss for energy inten-

sity, the results do not provide any explanation why this may be so. We do not observe the

internal decision making process the EIA undergoes until it agrees to release one specific

set of forecasts. Further we do not observe the potential political pressures which lead to

one set of forecasts over another.

Further inquiry into the actual method of forecasting energy intensity employed by

the EIA provided an interesting, although less behavioral, explanation for the observed

sequence of overpredicted energy intensity values. Forecasts and rudimentary forecast

4Due to rounding the parameter estimate is not exactly one.
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Figure 4: Estimated Loss Functions for U.S. Gross Domestic Product
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evaluation are posted on the EIA website.5 From the posted calculation it is apparent

that energy intensity is not forecast directly, yet constructed from the ratio of the forecast

for energy consumption and gross domestic product. This implies that the implicit loss

for energy intensity forecast error is the ratio of the loss for energy consumption over the

loss for GDP:

L
(
εENI

t+τ,t

)
=

L(εENC
t+τ,t )

L(εGDP
t+τ,t )

(4)

Tables 2 and 3 show that we cannot reject the null of a symmetric loss function for

energy consumption for quad-quad or lin-lin loss using any combination of instruments.

We do, however reject the null of symmetric loss for the GDP forecasts at the 3% level for

all 16 cases. The implicit loss function for GDP is depicted in figure 4.

Energy consumption forecasts, as well as all of the other series with the exception of

GDP are calculated from using the EIA National Energy Modeling System (NEMS). GDP

is forecast by assuming an annual growth rate. The published forecasts underpredict GDP

growth for a majority of the observed time periods at the one and two period horizon.

Admittedly, GDP growth is very difficult to forecast. A naive forecast would on average

be expected to be as likely to overstate as to understate GDP growth. The repeated un-

5http://www.eia.doe.gov/oiaf/analysispaper/tables2 18.html
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derprediction of GDP growth may just reflect a conservative forecasting approach, which

we here interpret as asymmetric loss. We take this as evidence that the consistent over-

predictions of energy intensity for the US economy have their source in asymmetric loss

over GDP.

The degree of asymmetry of the forecasters’ loss function is interesting, yet ultimately

we are interested in testing whether the observed forecasts are rational. The top panels in

tables 4 and 5 display the results for the joint hypothesis test of forecast rationality under

symmetric loss.6 The results presented in these top panels are especially interesting, since

symmetric loss is assumed in the vast majority of forecast rationality tests. Therefore the

top panels indicate a ”traditional” test for forecast rationality. Overall we reject rational

forecasts for energy intensity and GDP for all considered sets of instruments, forecast hori-

zons and loss functions at the 1% level. This is not surprising given the previous estimates

for α. We further reject rationality in most scenarios for coal consumption, electricity

sales, net petroleum import, natural gas imports, coal prices and average electricity prices

for both lin-lin and quad-quad symmetric loss.

The bottom panels of table 4 and 5 provide the J-tests under asymmetric loss, which

allows us to check whether the rejection of forecast rationality is due the assumed shape

of the loss function. For energy intensity we fail to reject the null of rationality and

asymmetric loss for all cases considered at the 10% level. GDP forecasts are rational with

the exception of the three instrument case for the end of year forecasts under lin lin loss

and and the three and four instrument case for the end of year forecasts under quad-quad

loss as well as the three instrument case for the one year ahead forecasts for quad-quad

loss.

Overall we reject forecast rationality for 68 out of 96 valid cases under lin-lin symmetric

loss and 65 out of 96 valid cases for quad-quad symmetric loss. Once we relax the symmetry

restriction, we reject rationality for 12 out of 72 valid cases for lin-lin loss and 14 out of 72

valid cases for quad-quad loss. It is to be noted that we fail to reject forecast rationality

for energy consumption for all cases under quadratic loss and the majority of cases for

lin-lin loss.

6This case is overidentified for all k since we are ”Fixing” the asymmetry parameter and p.
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4. Conclusions

This paper provides tests of forecast rationality under a class of symmetric and asymmetric

loss functions, which nest the frequently used Mean Squared Forecast Error Loss and Mean

Absolute Forecast Error Loss. The series at the center of analysis are short term forecasts

for energy consumption production, prices, GDP and energy intensity published by the

Energy Information Agency. Using the loss function parameter estimator provided by

Elliott et al. (2004) we demonstrate that forecasts for energy intensity are only rational

under a highly asymmetric loss function. Further investigation shows that the asymmetric

loss function over energy intensity is due to asymmetric loss over GDP, since the EIA does

not forecast energy intensity directly.

Since these quasi-official EIA forecasts are used both for the calibration of economic

simulation models and for benchmarking engineering-based energy scenario analyses un-

derstanding the implicit loss function of the forecasters who constructed them is crucial.

Overall the forecasts of energy intensity reflect very conservative expectations of future

drops in energy intensity. Overpredicting the future energy intensity ratio understates

autonomous drops in efficiency and therefore overstates expected costs of regulation. The

rejection of rationality of energy intensity forecasts is likely due to the GDP forecasts,

while the energy consumption forecasts are judged to be rational. We therefore advise

modelers to use the energy consumption forecasts in combination with more reliable fore-

casts of GDP in order to construct a series of energy intensity expectations, which can be

used to calibrate models.
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