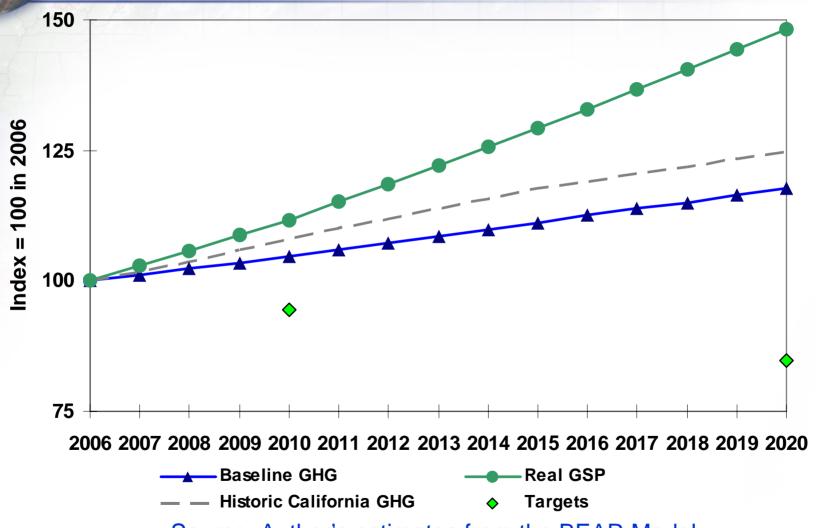
Managing Greenhouse Gas Emissions in California

California Climate Change Center UC Berkeley


David Roland-Holst

Department of Agricultural and Resource Economics UC Berkeley, dwrh@berkeley.edu

Objectives

- 1. Improve visibility for policy makers.
- 2. Rigorously estimate direct and indirect impacts and identify adjustment effects (BEAR).
- 3. Promote empirical standards for policy research and dialogue.

Doing Nothing is Not an Option

Source: Author's estimates from the BEAR Model.

Why a state model?

- 1. California needs research capacity to support its own policies
 - A first-tier world economy
- 2. California is unique

10 February 2006

- Both economic structure and emissions patterns differ from national averages
- 3. California stakeholders need more accurate information about the adjustment process
 - National assessment masks extensive interstate spillovers and trade-offs

Why a General Equilibrium Model?

- 1. <u>Complexity</u> Given the complexity of today's economy, policy makers relying on intuition and rules-of-thumb alone are assuming substantial risks.
- 2. <u>Linkage</u> Indirect effects of policies often outweigh direct effects.
- 3. <u>Political sustainability</u> Economic policy may be made from the top down, but political consequences are often felt from the bottom up. These models identify stakes and stakeholders *before* policies are implemented.

Model Structure

The modeling facility consists of two components:

- Detailed economic and emissions data (2003)
 - 125, 170 sectors
 - 10 household groups (by tax bracket)
 - detailed fiscal accounts
 - 14 emission categories
- Berkeley Energy And Resource (BEAR)
 Model a dynamic GE forecasting model

Economy-Environment Linkage

Economic activity affects pollution in three ways:

- Growth aggregate growth increases resource use
- 2. <u>Composition</u> changing sectoral composition of economic activity can change aggregate pollution intensity
- 3. <u>Technology</u> any activity can change its pollution intensity with technological change

All three components interact to determine the ultimate effect of the economy on environment.

Salient Energy Features

Production

- Input, output, and consumption based pollution modeling
- Nested CES for energy sources
- Extensively parameterized for efficiency/productivity

Consumption

- 'technology" of consumption/pollution
- detailed residential and transport modules

Energy

10 February 2006

- differentiated and flexible generation portfolios
- CES fuel substitution and vintage capital
- energy trading

Nested Production Structure

Output

Non-energy Intermediate Bundle

Capital-Energy-Labor Bundle (KEL)

Intermediate Demand by Region

Capital-Energy (KE)

Labor Bundle

Energy Bundle

Capital Demand

Labor Demand by Skill Type
Energy Demand by Fuel Type

Capital by Vintage

Economic Data 1

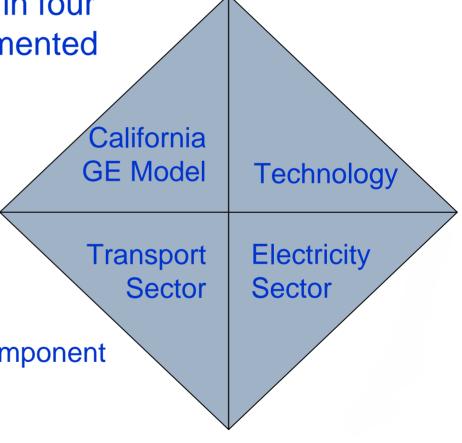
California Social Accounting Matrix (2003)

An economy-wide accounting device that captures detailed income-expenditure linkages between economic institutions. An extension of input-output analysis.

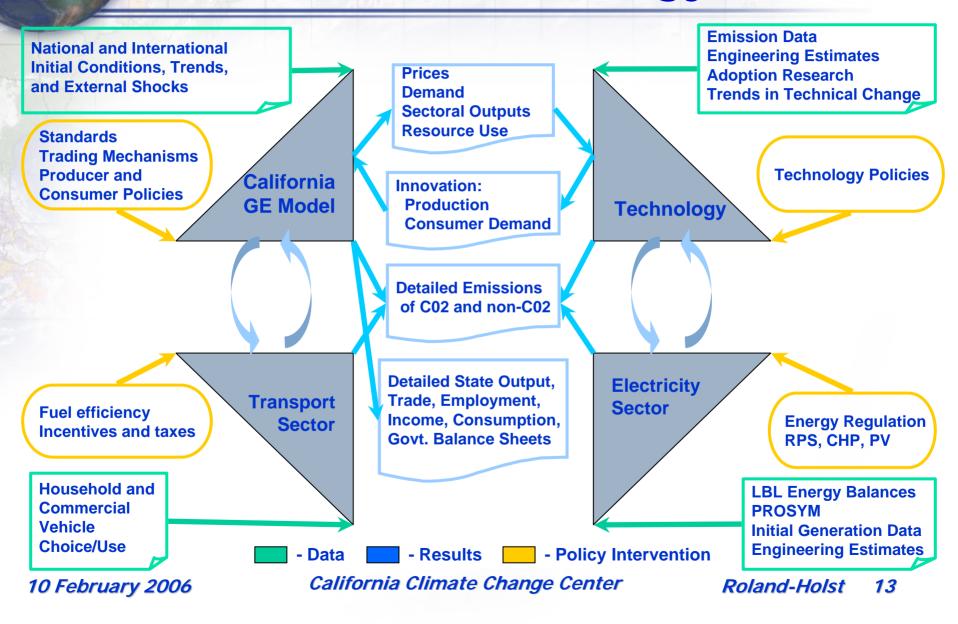
- 170 sectors/commodities
- Three factor types
 - Labor (2+ occupational categories)
 - Capital
 - Land
- Households (10 by tax bracket)
- Fed, State, and Local Government (very detailed fiscal instruments, 45 currently)
- · Consolidated capital account
- US and ROW trading partners

Economic Data 2

Satellite Accounts


- Employment
- Econometrically estimated parameters
- Trends for calibration
 - Population and other labor force composition
 - Independent macro trends (CA, US, ROW, etc.)
 - Productivity growth trends
 - Exogenous prices (energy and other commodities)
 - Baseline ("business as usual") pollution growth

How we Forecast


BEAR is being developed in four components and implemented over two time horizons.

Components:

- 1. Core GE model
 - 2. Technology module
 - 3. Electricity modeling
 - 4. Transportation component

Detailed Methodology

What is a General Equilibrium Model?

- Detailed market and non-market interactions in a consistent empirical framework.
- Linkages between behavior, incentives, and policies reveal detailed demand, supply, and resource use responses to external shocks and policy changes.

Electricity Sector Modeling

Power generation accounts for a significant percentage of C02 emissions within California.

Based on detailed producer data from CEC/PIER/PROSYM, we model technology and emissions in California's electricity sector

- Eight generation technologies
- Eleven fuels

Transportation Modeling

- The transport sector accounts for up to 48% of California CO2 emissions
- To meet our emission goals, patterns of vehicle use and technology adoption need to be better understood:
- You can contribute to this effort:

www.carchoice.org

Time Horizons

BEAR is being developed for scenario analysis over two time horizons:

1. **Policy horizon**: 2005-2025

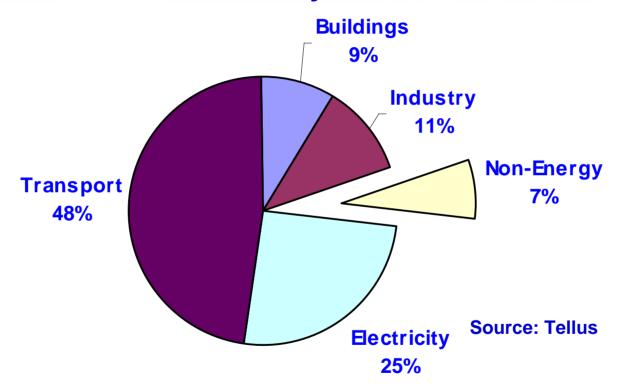
Detailed structural change:

- 1. 125, 170 sectors
- 2. 10 household income groups
- 3. Labor by occupation and capital by vintage

2. Climate horizon: 2005-2100

Aggregated:

- 1. 10 sectors
- 2. 3 income groups
- 3. labor and capital

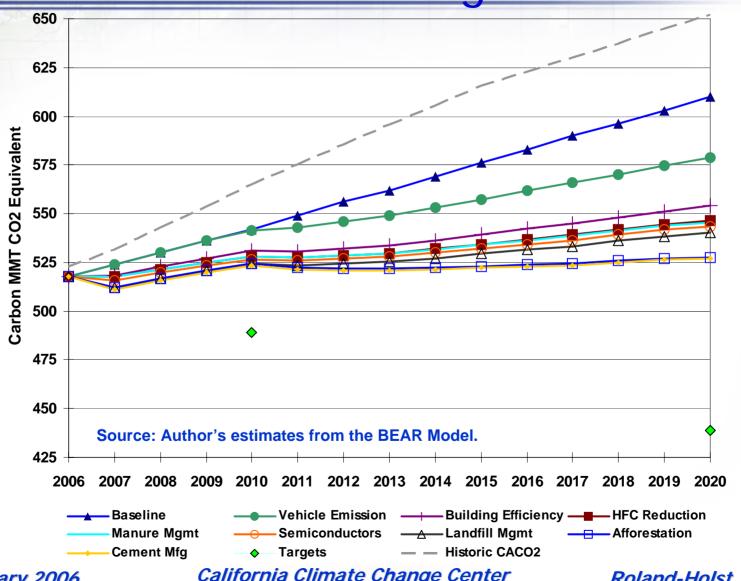

Economy-Environment Linkage

Economic activity affects pollution in three ways:

- Growth aggregate growth increases resource use
- <u>Composition</u> changing sectoral composition of economic activity can change aggregate pollution intensity
- 3. <u>Technology</u> any activity can change its pollution intensity with technological change
- All three components interact to determine the ultimate effect of the economy on environment.

GHGs are about Energy

C02 Emissions by Source



Nationally, electricity generation is responsible for 34 percent of all GHG emissions and 40 percent of all CO2 emissions.

Climate Action Policies Analyzed

- 1. Building Efficiency
- 2. Vehicle Emission Standards
- 3. HFC Reduction
- 4. Manure Management
- 5. Semiconductors
- 6. Landfill Management
- 7. Afforestation
- 8. Cement Manufacturing

Only Eight Measures Achieve Half of California's GHG Targets

Climate Action with Growth

	GHG MMT	Percent of Goal	GSP Millions	Jobs
2010	-19	-35	4,950	8,340
2020	-83	-49	58,800	20,350

Source: Author's estimates from the BEAR Model.

10 February 2006

Three Economic Principles

- 1. Demand Shifting: New demand is more likely to be for California goods and services.
- 2. Benefits Exceed Costs: Direct adjustment costs seem high to stakeholders in the short term, but these are usually outweighed by many indirect statewide benefits.
- 3. Early Action Pays: Conversion costs are fixed, but benefits compound like interest.

Innovation, Efficiency, Growth

The Growth-Environment tradeoff is a fallacy, and in California we can prove this.

- California is the world's premiere innovation economy.
- Efficiency is a potent stimulus for economic growth.
- Energy, transportation, and others can join IT, Biotech, and California's knowledgeintensive state industries to establish global standards for more sustainable economic growth.

Thank you.