## Reconciling China's Regional InputOutput Tables

# David Roland-Holst and Muzhe Yang 

 UC BerkeleyLecture I
Presented to the
Development Research Centre
State Council of the PRC
Beijing, 6 June 2005

## Lectures on Data and Model Development

1. Regional Data Reconciliation
2. Multi-regional Trade Flow Estimation
3. Integrated Micro-Macro Modeling

## Objectives

- Implement an efficient econometric methods for reconciling provincial Input-output tables with national accounts.
- Establish coherent national standards for data harmonization


## Motivation

- Provincial Input-output are available for China, but they exhibit a variety of consistency problems
- Among the more serious of these is inconsistency with national-level tables, individually and collectively
- Consistent individual and aggregate tables are essential to implement detailed economic analysis within and across provinces and regions


## Foundation - PRC Provincial IO Tables

- Already available
- Nationally comprehensive and consistent in terms of account definitions
- This work supports efforts already under way at the provincial and national (NBS) level, and also builds on existing DRC capacity for SAM and CGE research


## Proposed Approach

- Using Bayesian econometric techniques to incorporate prior information when updating and reconciling economic accounts
- We show how to estimate a consistent provincial table with additional prior information at the national level.
- The estimation begins with a consistent national table that is assumed (for convenience only) to be known with certainty.


## Overview of the Estimation Problem

The set-up of this matrix balancing problem follows Golan, Judge and Miller (1996). We focus on balancing schemes for provincial table.
The proposed approach is an extension of that usually applied to a national table.

## Estimation Strategy

Consider one province, $g \in\{1,2, \cdots, G\}$, a $K$-sector economy, represented by an input-output table, $1 \mathrm{O}^{(9)}$, where each entry indicates a payment by a column account to a row account:

$$
I O^{(g)}=\left[\begin{array}{cc}
T^{(g)} & \mathbf{f}^{(g)} \\
\mathbf{v}^{(g)^{\prime}} & 0
\end{array}\right]_{(K+1) \times(K+1)}
$$

where $T^{(g)}$ is a $K \times K$ matrix of intermediate sales, $\mathbf{f}^{(g)}$ is a $K$ -vector of final demands, and $\mathbf{v}^{(g)}$ is a $K$-vector of sectoral value added. The table $1 \mathrm{O}^{(g)}$ is therefore a $(K+1) \times(K+1)$ matrix, where corresponding column and row sums are equal.

## Estimation 2

## Assume:

(1) Intermediate demands are determined by a $K \times K$ fixed coefficient matrix $A^{(g)}$;
(2) A $K$-vector, $\mathbf{x}^{(g)}$, represents sectoral sales to both intermediate and final demanders.
Then, we have the following standard Leontief input-output model:

$$
A^{(g)} \mathbf{X}^{(g)}+\mathbf{f}^{(g)}=\mathbf{X}^{(g)}
$$

Define $\mathbf{y}^{(g)} \equiv \mathbf{x}^{(g)}-\mathbf{f}^{(g)}$, as the sectoral sales to intermediate demanders. This transaction has double meanings: the column vector of $\mathbf{y}^{(g)}$ represents sectoral intermediate expenditures, while the row vector of $\mathbf{y}^{(g)}$ represents sectoral intermediate receipts.

## Estimation 3

Now we transform the matrix balancing problem into the econometric problem of identifying the $a_{i j}^{(g)}$ elements of the $A^{(g)}$ matrix, based on the available economic information contained in the row and column sums IO table. This strategy takes the form

$$
\begin{aligned}
\mathbf{y}^{(g)} & =A^{(g)} \mathbf{x}^{(g)} \\
\mathbf{y}^{(g \times 1} & =\sum_{j=1}^{K} A_{j}^{(g)} x_{j}^{(g)} \quad(j=1, \cdots, K) \\
& \Rightarrow y_{i}^{(g)}=\sum_{j=1}^{K}{ }_{j=1}^{(g)} a_{i j}^{(g)} X_{j}^{(g)} \quad(i, j=1, \cdots, K) \\
& \because T_{i j}^{(g)}=a_{i j}^{(g)} X_{j}^{(g)} \\
& \Rightarrow \sum_{j=1}^{K} T_{i j}^{(g)}=y_{i}^{(g)}=\sum_{j=1}^{K} T_{j i}^{(g)} \quad(i, j=1, \cdots, K)
\end{aligned}
$$

## Identification Strategy

To proceed, we transform the national table in precisely the same way [omit the ( g ) superscript in the last three slides].
Now we use the entropy principle to recover $A$ and $A^{(g)}$ from the top down, under the row-column linear restrictions and the micro-macro consistency requirement.

## Balancing Scheme for the National Table

Consider the standard formulation $\mathbf{y}=\mathbf{A x}$, where $\mathbf{y}$ and $\mathbf{x}$ are $K$
-dimentional vectors of known data and $A$ is an unknown $K \times K$ matrix that must satisfy the following three conditions:
(1) Consistency:

$$
\sum_{i=1}^{K} a_{i j}=1 \quad(j=1, \cdots, K)
$$

(2) Adding up:

$$
\sum_{j=1}^{K} a_{i j} x_{j}=y_{i} \quad(i=1, \cdots, K)
$$

(3) Non-negativity:

$$
a_{i j} \geq 0 \quad(i, j=1, \cdots, K)
$$

## Maximum Entropy Principle

Given the three conditions, the problem of identifying the $a_{i j}$ elements of the $A$ matrix is formulated as:

$$
\max _{a_{i j}>0}-\sum_{i=1}^{K} \sum_{j=1}^{K} a_{i j} \ln a_{i j}
$$

subject to:

$$
\begin{gathered}
\sum_{i=1}^{K} a_{i j}=1 \quad(j=1, \cdots, K) \\
\sum_{j=1}^{K} a_{i j} x_{j}=y_{i} \quad(i=1, \cdots, K)
\end{gathered}
$$

The solution to this problem is denoted as $\tilde{a}_{i j}^{\mathrm{ME}}$.

## Balancing Scheme for Provincial Tables

Consider the previous formulation for province $g \in\{1,2, \cdots, G\}$, i.e.

$$
\mathbf{y}^{(g)}=A^{(g)} \mathbf{x}^{(g)}
$$

where $\mathbf{y}^{(g)}$ and $\mathbf{x}^{(g)}$ are $K$-dimensional vectors of known data and $A^{(g)}$ is an unknown $K \times K$ matrix that must satisfy:
(1) Consistency:

$$
\sum_{i=1}^{K} a_{i j}^{(g)}=1 \quad(j=1, \cdots, K)
$$

(2) Adding up:

$$
\sum_{j=1}^{K} a_{i j}^{(g)} x_{j}^{(g)}=y_{i}^{(g)} \quad(i=1, \cdots, K)
$$

(3) Non-negativity:

$$
a_{i j}^{(g)} \geq 0 \quad(i, j=1, \cdots, K)
$$

## Specification of Prior Information

The national level estimates provide information that may be used in recovering estimates of provincial SAMs. This information can be stated as a series of prior restrictions on estimating the new provincial IO. We give six examples:
(1) Links between national and provincial accounts:

$$
\begin{aligned}
& \sum_{g=1}^{G} x_{j}^{(g)}=x_{j} \quad(j=1, \cdots, K) \\
& \sum_{g=1}^{G} y_{i}^{(g)}=y_{i} \quad(i=1, \cdots, K)
\end{aligned}
$$

(2) Properties of national level estimates $\hat{a}_{i j}^{\mathrm{ME}}$ :

$$
\begin{gathered}
\sum_{j=1}^{K} \overparen{a}_{i j}^{\mathrm{ME}} x_{j}=y_{i} \\
\stackrel{(1 \text { above })}{\Leftrightarrow} \sum_{g=1}^{G} \sum_{j=1}^{K} \overparen{a}_{i j}^{\mathrm{ME}} x_{j}^{(g)}=\sum_{g=1}^{G} y_{i}^{(g)}
\end{gathered}
$$

## Priors 3-5

(3) Maximum entropy estimates for each provincial IO:
(4) Provincial adding-up restrictions:

$$
\begin{gathered}
\sum_{j=1}^{K} \overparen{a}_{i j}^{\mathrm{ME}(g)} x_{j}^{(g)}=y_{i}^{(g)} \\
\sum_{g=1}^{G} \sum_{j=1}^{K} \overparen{a}_{i j}^{\mathrm{ME}(g)} x_{j}^{(g)}=\sum_{g=1}^{G} y_{i}^{(g)} \\
\stackrel{(2 \text { above })}{\Leftrightarrow} \sum_{g=1}^{G} \sum_{j=1}^{K} \overparen{a}_{i j}^{\mathrm{ME}(g)} x_{j}^{(g)}=\sum_{g=1}^{G} \sum_{j=1}^{K} \overparen{a}_{i j}^{\mathrm{ME}} x_{j}^{(g)}
\end{gathered}
$$

(5) If the set of provincial IO tables is not complete, we can assume the following:

$$
\sum_{j=1}^{K} \widehat{a}_{i j}^{\mathrm{ME}(g)} x_{j}^{(g)}=\sum_{j=1}^{K} \widehat{a}_{i j}^{\mathrm{ME}} x_{j}^{(g)}
$$

## Prior 6

(6) Assume that the activity accounts represent homogeneous technologies in each province, with the technological coefficients denoted as $\bar{a}_{i j}$. Therefore, we have:

$$
\begin{aligned}
& \sum_{j=1}^{K} \widetilde{a}_{i j}^{\mathrm{ME}} x_{j}^{(g)}=\sum_{j=1}^{K} \widehat{a}_{i j}^{\mathrm{ME}(g)} x_{j}^{(g)}=\sum_{j=1}^{K_{A}} \bar{a}_{i j} x_{j}^{(g)}+\sum_{j=K_{A}+1}^{K} \stackrel{\frown}{a}_{i j}^{\mathrm{ME}(g)} x_{j}^{(g)} \\
& \Rightarrow \sum_{j=1}^{K_{A}} \bar{a}_{i j} x_{j}^{(g)}=\sum_{j=1}^{K} \widehat{a}_{i j}^{\mathrm{ME}} x_{j}^{(g)}-\sum_{j=K_{A}+1}^{K} \frown_{i j}^{\operatorname{ME}(g)} x_{j}^{(g)} \\
& \Rightarrow \bar{a}_{i}=\frac{\sum_{j=1}^{K} \widetilde{a}_{i j}^{\mathrm{ME}} x_{j}^{(g)}-\sum_{j=K_{A}+1}^{K}{ }_{\breve{a}_{i j}}{ }^{\mathrm{ME}(g)} \chi_{j}^{(g)}}{\sum_{j=1}^{K_{A}} X_{j}^{(g)}}
\end{aligned}
$$

## Other Prior Information

In addition to the examples given here, any specific prior information about the accounts or underlying technical relationships. These include:

1. Cell inequality or boundary constraints (><0, etc.)
2. Institutional budget constraints.
3. Fixed values or variance constraints.

## Summation

With these conditions in mind, we can express prior information for estimating each provincial table as follows:

$$
a_{i j}^{0(g)}=\left\{\begin{array}{cc}
\overline{\bar{a}}_{i \cdot} & \left(j=1, \cdots, K_{A}\right) \\
\bar{a}_{i j}^{\mathrm{ME}(g)} & \left(j=K_{A}, \cdots, K\right)
\end{array}(i=1, \cdots, K)\right.
$$

where $\hat{a}_{i j}^{\operatorname{ME}(g)}$ comes from the first-round maximum entropy estimation for each provincial IO table.

## Cross Entropy Principle

Finally, the problem of identifying the $a_{i j}^{(g)}$ elements of provincial the $A^{(g)}$ matrix is formulated as:

$$
\min _{a_{i j}^{(g)}>0} \sum_{i=1}^{K} \sum_{j=1}^{K} a_{i j}^{(g)} \ln a_{i j}^{(g)}-\sum_{i=1}^{K} \sum_{j=1}^{K} a_{i j}^{(g)} \ln a_{i j}^{0(g)}
$$

subject to:

$$
\begin{aligned}
\sum_{i=1}^{K} a_{i j}^{(g)} & =1 \quad(j=1, \cdots, K) \\
\sum_{j=1}^{K} a_{i j}^{(g)} x_{j}^{(g)} & =y_{i}^{(g)} \quad(i=1, \cdots, K)
\end{aligned}
$$

the solution to which is denoted by $\hat{a}_{i j}^{\mathrm{CE}(g)}$.

## How to Proceed

I recommend four steps:

1. Encode the estimation methods (STATA, MATLAB)
2. Select a sample province to establish estimation standards
3. Apply to all provincial tables
4. Iterate with NBS, provincial sources

## References

1. Golan, A. (2003), "Image Reconstruction of Incomplete and Ill-Posed Data: An Information -Theoretic Approach," Working Paper, Department of Economics, American University, January.
2. Golan, A., G. Judge, and D. Miller (1996), Maximum Entropy Econometrics: Robust Estimation with Limited Data (John Wiley \& Sons, New York).
